Research Summaries

For the period of July 1, 2014 – June 30, 2015



Ralph Archuleta                              1/1/15-12/31/15                                            38,006


National Science Foundation, 1449275


Numerical Modeling of Earthquake Motions: Waves and Ruptures

Numerical simulation of rupture propagation and seismic waves is an essential tool for investigating earthquake physics and refining the velocity structure of the Earth. The physics of earthquake ruptures is a complex phenomenon involving the constitutive law for sliding friction (with many different processes, e.g., temperature, pressure, slip and slip rate, affecting the friction) along with a medium that may behave elastically or plastically. The fault itself has an inherent roughness at all scales. There is simply too few data by which one can constrain the physics of an earthquake rupture. The earthquake rupture, being complex, produces a complex radiated field which is poorly sampled by the arrays of seismic instruments. Because one cannot directly observe an earthquake – the complex evolution of slip on a fault, which is buried within the Earth to depths of 100’s of kilometers – a primary question is what data can constrain the numerical models? Thus the participants in the workshop will be considering both forward modeling of earthquakes and inversion methods by which properties of the earthquake source are inferred. The approaches are complementary; both depend on the elastic and attenuation properties of the Earth. Because of uncertainties in the properties of the Earth as well as the spatial-temporal distribution of stresses on the fault, there are tradeoffs between what is considered a property of the source and what is a property of the Earth. The discussion in a focused workshop allows those who have experience with these problems to discuss how the different methods might lead to better constraints on the source and propagation. This would lead to better numerical simulations and hence more realistic ground motion estimates from future earthquakes.



Ralph Archuleta         Chen Ji        9/1/12-8/31/16                                            359,859


National Science Foundation, EAR-1215769


Improving Resolution of Finite Inversions With Increasing Bandwidth.

This project will develop new methods of inverting observations to provide more resolved and robust estimates kinematic rupture models. Without direct measurements of the fault during an earthquake the spatio-temporal evolution of the slip on the fault must be inferred from seismic, geodetic and geologic observations. While the representation theorem provides the link between the spatio-temporal evolution and the observations, the inverse problem has been a quagmire. The number of parameters needed to infer the details of a rupture is much larger than the number of available data, i.e., the inverse problem is underdetermined. By itself that is a problem. When coupled with the fact that the temporal variables (rise time and rupture time) are not linearly related to the observations, additional complexities arise in the methods for inverting the observations. Nonetheless, models of the spatio-temporal evolution of slip, i.e., the source process, can be found. The quality of these models needs to be quantitatively assessed.


As carefully enumerated by Hartzell et al. (2007) each factor from the subfault size to the selection of a misfit norm plays a role in determining a rupture model. Once a model has been determined there is still the question of how uncertain the model parameter is at each point on the fault. There are means of estimating the uncertainty of each parameter as if it were independent of the other parameters. This provides some sense of the uncertainty. One approach is to examine cross-validation, i.e., predicting observations that were not used to constrain the inversion and its relationship to the uncertainty of the kinematic model. The question is not the misfit between the predictions and observations rather it is quantifying the difference between different models— uncertainty of the parameters on the fault.


Many different models are found that are equally consistent with the data. A key point is that the faulting model should satisfy all of the data. While inversion methods continue to be improved with new measures of uncertainty in the models, the factor that has led to the largest reduction in the space of models is the addition of new data. This is more than adding stations, though that is useful, but it is adding data that are independent, such as GPS or InSAR.


The data that exists and have not been fully exploited are the high-frequency seismic data. These data provide important constraints on stress drops and variations in rupture velocity. By using these data in concert with low-frequency seismograms, GPS and InSAR, the resulting kinematic models will be better resolved and more robust. Two methods are proposed for exploiting the high-frequency data. First using back projection, areas on the fault that produce high-frequency radiation are identified. Using a multiscale inversion, the parameters are resolved on a finer scale and used as constraints on the inversion at a larger scale. Second, derivatives of the acceleration envelope function are inverted to determine regions of high-frequency radiation. These regions will also be subject to multi-scale inversion to constrain the overall inversions. In combination the two methods will improve the resolution and robustness of the inverted rupture model.



Ralph Archuleta                              11/1/12-8/31/13                                            47,000

                                                           9/1/13-Fixed Price                                      47,000


University of Southern California, 10035505 & 10113445


SCEC4 Participation, Project F: Broadband Modeling of Earthquake Ground Motions

The scope of UCSB’s involvement is to ensure the correct implementation of the UCSB’s broadband modeling modules (Schmedes et al., 2012) in the validations and forward simulations. Once the validations are complete, the UCSB module will be made available on the SCEC Broadband Platform. UCSB is only one of several modeling techniques that will be developed and fined tuned during the calibration phase of the validation project. The first validations will run through January 2013 for earthquakes that are modeled with a single plane and through February 2013 for earthquakes involving more than one fault plane.




Ralph Archuleta                               2/1/14-1/31/15                                                             30,000


University of Southern California, 10202846


SCEC4 Partcipation, Project F: Broadband Modeling of Earthquake Ground Motions

In this research project, we will modify the UCSB broadband method to use a homogeneous velocity structure above the Moho for high frequencies propagation combined with a Boore & Joyner (1997) quarter wavelength amplification. In the current UCSB BB method the Green’s functions are critical to a realistic estimate of the ground motion because they are used for both the high- and low-frequency wave propagation. We will modify the specified velocity structure for propagating high frequencies (f ≥ ~1.0 Hz). The low-frequency computation will remain the same. For the high frequencies we will eliminate the near-surface velocity structure. A constant-velocity, anelastic medium will be used for depths to the deepest part of the fault. The shear wave velocity will be selected such that it has almost the same travel time as for the original structure. The Green’s functions will be adjusted in time so that the S waves align. After modifying the UCSB BB method, we will verify the modifications by recomputing all the ground motions in the validation exercise of June 2013 and will continue with larger broadband platform research.


Ralph Archuleta                                              2/1/12-1/31/16                                              25,000


University of Southern California, 20121443


SCEC4 Participation, Project E: Dynamic Ruptures with Off-Fault Dissipation Processes: Constraints on Energy Partition, Size-Dependent Levels of Prestress and Ground Motion Predictions.

We propose to critically investigate the different modes of energy partition in earthquakes and the relevant implications on ground motions, rupture speed and levels of prestress by doing self-consistent dynamic rupture simulations. The primary focus is to estimate the relative contribution of on and off-fault dissipation mechanism to the total energy budget. We will start by investigating the conditions under which a steady slip pulse can propagate on a velocity- weakening friction interface embedded in an elasto-plastic bulk. Steady propagation will allow us to examine the relationship between the width of the plastically deforming zone surrounding the fault and the constant width of the slip pulse. Because steady propagation does not emit radiated energy, accurate bounds can be placed, in this case, on the energy dissipated in the inelastic and frictional processes. Steady propagation will also allow us to investigate, in a more systematic way, the effect of perturbations in the material properties, material response, and prestress on the rupture dynamics including variability in rupture speed, maximum slip rate and ultimately rupture arrest.


We will also address several seismologically-relevant questions. For example, we will be examine the effect of off-fault plasticity on seismic observables like rupture speed, acceleration to limiting speed in sub-shear ruptures, transition to super shear and slip rate functions (in terms of the maximum and the average values of slip rates). Moreover, we will also be able to assess the impact of off-fault dissipation on the high frequency content of ground motion. This is relevant for developing physically-based models for ground motion prediction.


The project will accomplish the following tasks:

a. Quantify the magnitude of on- and off-fault dissipation and their relative contribution to the earthquake energy budget for different friction laws (rate and state law/slip weakening law).

b. Constrain the absolute levels of prestress consistent with the different modes of ruptures (cracks vs pulses) with and without the presence of off-fault dissipation mechanisms.

c.  Investigate the effect of off-fault dissipation on high frequency ground motion.




Ralph Archuleta                              1/1/15-3/31/15                                                8,500


University of Southern California, 57443669


SCEC4 Participation, Project M: Broadband Modeling of Earthquake Ground Motions

This effort will simulate high-frequency ground motions for the eastern United States using the UCSB Broadband Method (Crempien and Archuleta, 2014). In particular we will focus on reproducing the ground motions from the 1988 Saquenay M 5.8 earthquake, the 2011 Mineral, Virginia M 5.6 earthquake and the 2005 Riviere du Loup M 4.9 earthquake.

1. We will investigate the likelihood that stress drop in the eastern US is depth dependent.

2. We know that the 1-D Green’s functions fail to produce the temporal signature found in the data. To correct this we will be adding scattering coda to the time histories by convolving scattering functions with the Green’s functions for a 1-D velocity structure.

Jin et al. (1994) and Mayeda and Walters (1996) show that at different frequency bands, the coda energy envelopes exhibit different durations for different tectonic regions. Thus we first have to determine for the scattering parameters for the eastern US before convolving with the Green’s functions.




Ralph Archuleta                              2/1/12-1/31/16                                              25,000


University of Southern California, Y86552-D


SCEC4 Participation, Project D: 1987 Superstition Hills Earthquake: A Triggered Event with a Complex Nucleation and Rupture Dynamics.

The basic goals of this research are as following:

1. Dynamic rupture model for Elmore Ranch earthquake.

Although the Elmore Ranch Fault (ERF) earthquake is relatively simple (most researchers have treated it as a point source), we want to construct a more comprehensive stress model for the ERF earthquake. We want to construct the initial stress on the ERF fault first, using existing methods (e.g., Hauksson, 1994), considering its local tectonic context and fault geometry and also taking into account the aftershock sequence of the ERF earthquake during the 12 hours preceding the Superstition Hills Fault (SHF) earthquake.

2. Evaluate the stress perturbation on the SHF due to the Elmore Ranch earthquake

Based on the results from Step 1, as well as the location and focal information of the aftershock sequence of the ERF earthquake, we will evaluate the stress perturbation on the main SHF. We will account for the fault geometry with great care to insure the relative accuracy of the Coulomb stress change estimates. It is obvious that the MW 6.2 ERF earthquake will have a major influence on the SHF nucleation.

3. Dynamic rupture model for Superstition Hills earthquake.

We are going to combine the results from first two steps as outlined and previous research to constrain our stress model. We will take into account the heterogeneous velocity structure such as variable basement depth, material property contrast across the fault, as well as the non-planar feature of the fault (gradual fault strike changes, segment stepover). We wish to integrate as much previous research as possible to construct our rupture dynamics model. We want to construct an initial stress field that could produce the key rupture patterns obtained from the observations. The relocated aftershock dataset gives us a chance to look at the possibility of stress transfer and triggering. The strong motion waveforms and the surface rupture measurements place strong constraints on the stress conditions in the upper kilometers, which have almost no aftershocks in the double difference catalog. In particular we will analyze the stress conditions for the dynamic rupture model paying specific attention to the emergent nucleation and the partitioning of the seismic radiation into and high- and low-frequency energy.



Ralph Archuleta                              2/1/13-1/31/16                                              25,000


University of Southern California, Y86552-H


SCEC4 Participation, Project H: Incorporating Roughness and Supershear in UCSB Broadband Modeling

A puzzling observation of recorded borehole ground motion at very close hypocentral distances from faults reveal a great deal of incoherency in high frequency (HF) seismograms from direct body waves. Because of their arrivals, and the closeness of the recording station to the fault, one can deduce that the level of scattering of these waves is not that meaningful. Scattering increases in a diffusive way with distance, and travel time (Zeng et al., 1990), making it difficult for CODA to show up at such short distances. Therefore a plausible assumption is that there must be complexity at the rupture fronts of earthquakes for very small scales (Gusev, 2012). With these important observations, it is necessary to study in detail the rupture front complexity and to answer the question: Is the rupture front continuous and smooth across the fault? If we find that rupture front is not smooth or continuous across the fault, then a natural follow up question would be how will this complexity at smaller scales affect ground motion intensity measures (GMI’s), such as PGA, PGV and Arias Intensity? If we find that the rupture front is not continuous or smooth, then the effect of the irregularity in the rupture front must be included into current kinematic ground motion simulation techniques such as Schmedes et al. (SAL, 2010).




Duane DeVecchio      Dylan Rood      Ralph Archuleta      2/1/12-1/31/16                       6,500


University of Southern California, Y86552-K


SCEC4 Participation, Project K: Precise Fault Slip Rates on the Oak Ridge Fault: New age constraints on the Saugus Formation using 36Cl/10Be isochron burial dating

This project will begin the work of developing the chronology of an important Quaternary strain marker in Southern California, the Saugus Formation. The Saugus is variably deformed across numerous active faults in Los Angeles and Ventura Counties and its inferred age is commonly used to quantify fault slip rates. Yet because the formation is diachronous across the region and few absolute ages exist fault slip rates on many of the largest faults in Southern California are poorly constrained. Until recently the age of Saugus strata (0.2- 2 Ma) lay outside the range of applicability of existing Quaternary geochronological techniques. However, with the advent of recent advances in cosmogenic nuclide burial dating (36Cl/10Be isochron dating), which is capable of precisely dating (uncertainty <5-10%) strata of this age, a new opportunity exists to determine the age of these tectonically significant strata. The resulting chronology of the Saugus Formation will directly contribute to and reduce uncertainties in earthquake hazards assessments associated with the USGS Earthquake Hazard Program, UCERF3, and the proposed SCEC Ventura Special Fault Study Area.


The primary focus of this research is to resolve the two-fold uncertainty in the existing fault slip rate (5.9 mm/a and 12.5 mm/a) of the Oak Ridge fault (ORF), which extends for ~40 km through urbanized Ventura County. Rates are based on the inferred age of the Saugus Formation, with the 2-fold range in the rate reflecting the uncertainty in the upper age of Saugus strata (200-500 ka). Funds from this grant will be used to conduct fieldwork, including geologic mapping and identification of propitious sites for cosmogenic sampling of the top and the bottom of the Saugus Formation. Fieldwork will focus along a North-South transect from the across the Oak Ridge hangingwall north of Moorpark California, where a thick section of Saugus strata are preserved in the Happy Campy syncline.



Jim Boles                                          2/1/10-6/30/15                                            287,219


Department of Energy, DE-SC0003676


Fault-Related CO2 Degassing, Geothermics, & Fluid FLow in Southern California Basins---Physiochemical Evidence & Modeling

In this renewal proposal, we advance our studies of the geohydrology and geochemistry of active faults and young petroleum reservoirs in southern California, including the South Ellwood field in the Santa Barbara basin (SBB), the Newport-Inglewood Fault zone (NIFZ) in the Los Angeles basin, and the Lost Hills field in the San Joaquin basin (SJB).  Subsurface core samples, outcrop samples, well logs, reservoir properties, pore pressures, thermal gradients, formation fluid compositions and structural-seismic sections are being studied to characterize the geohydrologic/diagenetic history and degree of compartmentalization for these known fault networks in a transpressional tectonic setting.  We are also investigating the isotopic and trace elements signatures in calcium carbonate minerals, including vaterite, that characterizes rapid CO2 degassing, as observed in scales from production well tubing in several petroleum and geothermal reservoirs.  These data provide the constraints for our geohydrologic models that are being developed to predict fluid pressures, multiphase fluid saturations, rates and patterns of deformation and fluid flow, subsurface temperature, geothermal heat flow, and fluid geochemistry associated with large fault systems.  In past DOE-sponsored research, we mathematically modeled reactions associated with the transport of petroleum SBB-sourced methane and meteoric groundwater mixing in faulted submarine reservoirs, which are partially uplifted along coastal Santa Barbara.  This fluid mixing simulation resulted in carbonate mineralization along the Carneros-Refugio fault, as observed in outcrops. We have also recently developed basin-scale models that incorporate coupled processes of poroelastic deformation and fluid flow, as well as field-scale models of multiphase flow for the NIFZ and Long Beach fields. We are currently developing a new coupled flow-heat-poroelastic deformation model, TUFTS2D-FE, and a multiphase flow model, TUFTS2D-FV, and reactive flow applications for the NIFZ in the Los Angeles basin.  This renewal proposal requests support for additional three years of work, and details the field and modeling studies scheduled for these fascinating faults, reservoirs, and sedimentary basins.  One new aspect will be a first time study in the LA basin of the helium isotopic composition of deep natural gas in the basin, which is an indicator of degree of connection to the mantle.  Our past collaborative research has been very productive, and this new work will make new and important geologic contributions to understanding the leakage behavior of active faults in sedimentary basins.  As these types of reservoirs become the primary targets for anthropogenic carbon sequestration, we feel we are making fundamental contributions to science and an important contribution to society.




Derek Booth                                     9/21/12-9/30/14                                          104,893


DA Army Engineers/Vicksburg District, Corps of, W912HZ-12-2-0016


Web-Based Conceptual Model for Urban Stream Systems

The restoration of any complex environmental system requires broad understanding of the causal mechanisms of degradation, clear diagnosis of the specific processes of degradation occurring at a given place and time, and a set of tools or techniques that can effectively address those processes of degradation. For the restoration of streams and their watersheds, successful implementation also requires clear recognition of the contextual framework in which the degradation is occurring, so that tools and “lessons learned” from prior efforts can be applied, but only where appropriate; and a realistic understanding of what restoration outcomes are feasible, given both watershed context and preexisting social and economic constraints.

“Stream restoration” is thus a complex and multi-dimensional enterprise, and so there should be little surprise that examples of successful stream restoration are few. Practitioners typically embark on project analysis with a limited geographical and thematic scope, thus inviting treatment of local symptoms of degradation rather than underlying causes; using a static body of knowledge without application of the most current scientific findings and engineering approaches; and bringing a narrow geographic range of practice, which encourages the application of tools developed in one hydro-geo-eco-climatic region that may be completely inappropriate in another. Project design is similarly crippled by an overly narrow set of outdated and potentially inappropriate tools and techniques. Finally, the articulated expectations of stream restoration are typically burdened with platitudes about lofty desired outcomes that have little or no chance of ever being achieved, by virtue of either legacy disturbances left uncorrected, overly limited scope of actions, or simply inadequate technical and financial resources.

The goal of this project has been to support the overall EMRRP effort to enhance the capacity and capability of the national stream restoration community of public and private practitioners, with an explicit focus on urban streams throughout the varied climatological and physiographic regions of the United States. Its products are also intended to promote improved understanding of the impacts of urbanization on aquatic ecosystems for the myriad federal, state, and local agencies tasked with protecting or restoring those resources.




Erin Bray                                          12/1/14-11/30/15                                          64,785

Thomas Dunne                               


UC Sea Grant College Program


How Hydrologic Processes, Geomorphological Processes, and their Interactions in Gravel Rivers Sustain the Extent and Quality of Chinook Salmon (Oncorhynchus tshawytscha) Spawning Habitat During Managed Flow Regimes

This research will investigate how bedform morphology controls the distribution of hydrologic fluxes across gradients of elevation, topography, climate, discharge, and hydraulic conductivity in gravel rivers. We will first quantify bedform-flux interactions using high-resolution derived terrain, discharge information measured at multiple gauging sites, and climate information in distinct bar-bend reaches. This high-resolution data will also be used to inform and evaluate a two-dimensional subsurface hydrologic model in channel bedforms where the spatial distribution of hydraulic conductivity is measured in situ. Our goal is to investigate the effects of bar morphology, patterns of streambed hydraulic conductivity, and the physical parameters controlling bedform morphology on the hyporheic flow. We will document their influence on patterns of subsurface flow and quantify physically based adjustments on the magnitude and extent of infiltration and seepage, intragravel flow velocity, the residence time distribution, and the mean hyporheic depth. We quantify and compare these physical measures for a natural, engineered, and flow-modified river reach at spatial and temporal scales critical to Chinook salmon (O. tshawytscha) early life stages.




Douglas Burbank     Bodo Bookhagen      7/1/08-7/31/14                                280,000


National Science Foundation, 0819874


Collaborative Research: Orogeny, orography, and unsteady erosion: evolution of the Himalaya

Many aspects of climate-erosion-tectonic interactions remain unresolved. This research attempts to understand how Himalayan rates of erosion vary as a function of space and time and what drives such changes. Some detrital cooling-age data suggest that, irrespective of how spatially irregular erosion may be at short time scales, erosion rates become much steadier at longer time scales. This research will test that contention. The PIs hypothesize that, at decadal to millennial scales, spatial variations in rainfall distributions modulate differences in erosion rates. Specific stream power (the product of discharge and channel gradient) is hypothesized to provide a reliable proxy for modern erosion rates. To underpin tests of these hypotheses, the PIs have developed and calibrated the highest resolution, remotely sensed data on rainfall currently available for the Himalaya. When combined with digital topography, rainfall is routed through the Himalayan landscape and predicts pronounced along-strike variations in stream power. To test whether stream power successfully predicts variations in erosion rates, the PIs will collect 50 detrital cosmogenic nuclide samples within 10 catchments that exhibit strong contrasts in stream power. With judicious placement of sampling sites, this large new data set should also permit testing of a much-debated question: is the rate of erosion controlled by large trunk rivers or by the erosive power of much smaller catchments (<20 km2) that cover most of the landscape?


In order to assess the extent to which erosion rates change at longer time scales, the PIs will collect relief transects of bedrock samples in each of the CRN-sampled catchments and will measure ~100 cooling ages each for apatite, zircon, and muscovite, representing closure temperatures of  ~80°, ~200°, and ~375°C, respectively. Reflecting different times and depths of cooling, these ages will be analyzed using thermokinematic models to create reliable reconstructions of temporal changes in erosion rates at each of 10 catchments.


Furthermore, the PIs’ current analysis suggests that topographic relief exerts a fundamental control on the distribution of Himalayan rainfall and that valleys of large rivers “guide” moisture into the orogen. At time scales for which Himalayan topography and climate are “constant”, spatial variations in rainfall, stream power, and, hence, erosion are, therefore, envisioned to remain steady. The Himalayas, however, are an active collisional orogen in which rocks advect laterally faster than they move vertically. The PIs hypothesize that topography also advects laterally, especially in the rain shadow north of the Himalayan peaks where erosion rates appear lower. Moreover, this advection is hypothesized to cause major re-organization of Himalayan drainages and related topography. If so, new avenues for rainfall to move into the orogen will open, old ones will close, and, as a consequence, new patterns of erosion should emerge. As advection leads to stream capture and creation of new Transhimalayan rivers with greatly enhanced erosive power, other trunk channels will be beheaded, thereby losing power. Such changes in stream power should be expressed by changes in both erosion rates and topographic relief. The PIs propose to test these novel ideas by reconstructing changes in topographic relief using bedrock cooling ages both from their relief transects and from equal-elevation transects. Such dynamic Transhimalayan channels would stand in contrast to the persistence of rivers at the Himalayan “indentor corners”. Despite the challenges presented by Himalayan landscapes, they provide a propitious setting: stark lateral variations exist in rainfall, erosion, and topography; cooling ages are almost ubiquitously reset, and strong signals of differential erosion should rise above the inevitable geomorphic and tectonic noise.




Douglas Burbank     Bodo Bookhagen      8/1/11-7/31/16                                275,006


National Science Foundation, 1050070


The Pamir Frontal Thrust System: Rates, Style, and Controls on Deformation.

Our goals include defining how, where, and at what rates shortening has been accommodated within the Pamir-Tian Shan structural corridor, and exploring the extent to which erosion by an axial river modulates shortening rates on faults proximal to the river.  We will focus our work along the axis of the structural corridor where we can examine a rich suite of along- strike structural variability in the style, orientation, and (likely) rate of deformation. The Pamir Frontal Thrust (PFT) is the leading edge of the Pamir orogen. In reality, some apparently Pamir-related faults occur to the north of the PFT, including nearby faults that ruptured in the 1985 M7.4 Wuqia earthquake [Feng et al., 1988]. Within the study area, the PFT tends to be localized within lower Paleogene gypsum beds, and it typically carries the entire Cenozoic stratigraphic succession (up to 8 km thick) in its hanging wall. Where the PFT is exposed in the Bozi Tage Range near the Kezilesu River, it tends to be a low-angle thrust dipping from 0° to 15°. Ongoing slip on the PFT is evidenced by offset talus slopes that show fresh scarps. Typically, the PFT slices across the Xiyu conglomerate, an upper Cenozoic, time-transgressive fluvial conglomerate that ranges in age from 16 to 0 Ma within the foreland [Heermance et al., 2007], but which is less than 1.6 Ma where it has been paleomagnetically dated a few kilometers north of the PFT in the corridor [Chen et al., 2005]. On the eastern margin of the Mayikake Basin, the PFT cuts nearly horizontally across a 50°-dipping, 3-km-thick panel of Xiyu conglomerate for about 4 kilometers.



Douglas Burbank     Bodo Bookhagen      5/15/12-4/30/16                              143,370


National Science Foundation, EAR-1148268


Collaborative Research: Reconstructing Mid-Miocene-to-Recent Paleo-Erosion Rates in the Eastern Andes, Northern Argentina

This project will focus on the analyses required to characterize long-term erosion rates throughout the entire section, while also gaining insight into how erosion rates may respond to variations in climate at sub-100 kyr timescales. We plan to use ~30 10Be analyses to undertake a low-resolution sampling of the 1-12 Ma portion of the section, at a density of ~1 sample per 330 Myr. We plan to use several 10Be samples on modern sediment, and divide the remaining 10Be samples between two sections of the stratigraphy that show the best opportunity for developing a high-resolution record of paleo-erosion rates. Such sections will be characterized by well-resolved paleomagnetic reversals, anchored by new tephrachronology with high-resolution U- Pb zircon ages. As mentioned above, we will likely focus on a 1.2-Myr interval between 7.4 – 6.2 Ma, which is currently bracketed by two ashes and contains 7 reversals. Nine additional samples in this interval would provide a resolution of ~1 sample per 100 kyr, capable of resolving 400-kyr cyclicity. An additional 11 samples would then be collected from a ~100 kyr long interval, allowing a nominal resolution of ~8.3 kyr per sample, capable of resolving variations as short as 23 ka. For comparison, we would like to repeat the above sampling strategy on a ~ 1-Myr-long interval in the late Pliocene/early Pleistocene, after the onset of northern hemisphere glaciation at ~ 2.8 Ma. The 20 additional 10Be samples focused on this interval would be paired with 26Al and 21Ne analyses in the same samples, in an effort to implement the full 3-isotope approach described above. 5-10 of these 21Ne analyses will be paired with 10Be samples to develop a cross-calibration and compute nucleogenic 21Ne, whereas the remaining 10-15 21Ne samples will be used to extend the low-resolution record back as far as 12 Ma.



Cathy Busby                                  3/30/14-2/28/15                                       172,791


Consortium for Ocean Leadership, T350A44 (BCF01)


U.S. Science Support Program

Co-Chief Scientist of Leg 350, International Ocean Discovery Program

This NSF-funded program has been in existence for over 45 years. Its mission is to explore the history and structure of the Earth as recorded in seafloor sediments and rocks, through ocean drilling for research purposes. Each expedition lasts two months and involves about 45 scientists and about 45 crew and technicians. The science party is supervised by three people: a staff scientist who has a full-time job at IODP, and two Co-Chief Scientists selected for their expertise in the type of rocks or sediments to be targeted, as well as their ability to supervise research and write/edit scientific reports and journal articles.



Cathy Busby                                     3/1/14-2/28/18                                            137,042


National Science Foundation, EAR-1347901


Collaborative Research: The Rosario Segment of the Cretaceous Alisitos Oceanic Arc (Baja California, Mexico): An Outstanding Field Analog to the Izu Bonin Arc


The Rosario segment of the Cretaceous Alisitos arc in Baja California is an outstanding field analog for the Izu-Bonin-Mariana (IBM) arc, which is under intense study by IODP. The Rosario segment is structurally intact, unmetamorphosed, and has superior three-dimensional exposures of an upper- to middle-crustal section through an extensional oceanic arc. Previous mapping of this 60-km-long segment of the Alisitos arc, done in the 1990’s (Busby et al., 2006), will provide a framework for the proposed study; however, that study focused mainly on field descriptions of the volcanic rocks, with limited geochronology, and no geochemistry. The proposed study will determine in detail the relationships between plutonic, hypabyssal, and volcanic rocks, using field, geochemical, and geochronological data. These data will be used to construct an “Island Arc Crust Virtual Field Model” to be used by scientists as a reference model for IBM drilling outcomes.




Cathy Busby                                     3/15/11-7/31/14                                          226,036


National Science Foundation, EAR-1019559


Steady State to Flare-Up ARC Magmatism in the Largest Cenozoic Silicic Igneous Province on Earth: The Sierra Madre Occidental (Mexico)

This project will carry on with the laboratory and collaborative components of our work. This “proof of concept” study will gather results to evaluate the feasibility of developing this project more robustly in the future. The revised work plan will enable us to continue to push forward our work in this very important and very poorly known region. It will allow us to continue an ongoing, very committed collaboration with Mexican colleagues from UNAM, Luca Ferrari (since 2007) and Elena Centeno-Garcia (since 2005). The research is as follows:

1. We will digitally compile and synthesize all previous available work, including unpublished maps and field data held by McDowell at UT Austin, and integrate it with the new results obtained by this study (see below). We will then interpret these data in the context of rapidly-evolving models for the origin of silicic large igneous provinces, and publish our findings. This will enable us to move forward with a well informed field plan once the security situation improves in Chihuahua.

2. We will perform Hf, O and U-Pb isotopic analysis of zircons from several sites in the northern SMO, to gain insight into the origin of the magmas in this world-class silicic large igneous province. This work will be done in close collaboration with Luca Ferrari, who is doing the same kind of work on his samples from the southern SMO, with Scott Bryan. Ferrari is very interested in this work, and is giving us a very good price to do the Hf and U-Pb analytical work at Juriquilla; the total comes to about half the in-house rate for Busby at UCSB, and substantially less than the rate posted on the University of Arizona website. In addition, a UCSB Senior Honors Thesis student (to be named) will carry out textural and modal analysis of thin sections, and interpret new geochemical data we will gather on pumices from the ignimbrites, as well as whole rock analyses of lava flows and intrusions.




Cathy Busby                                      8/1/14-7/31/17                                     116,048 


National Science Foundation EAR-1358130  REU Site: Collaborative Research: Field-Based Research on the Gulf of California Rift Margin Basins, Baja California Sur (Mexico)   


The goal of this Baja Basins Research Experience for Undergraduates (REU) project is for student participants to develop skills in conducting and communicating scientific research, to utilize an integrative field and lab research approach using digital technology and modern analytical lab equipment, and to learn international cooperation by collaborating side-by-side with Mexican students, professors, and mining professionals to address research questions on the tectonic evolution of the economically important Santa Rosalia rift margin basins in Baja California Sur, Mexico.




Jean Carlson     Ralph Archuleta        2/1/12-1/31/16                                        20,000


University of Southern California, 20121441


SCEC4 Participation, Project C: Implications of Physical Dissipation Mechanisms for Dynamic Faulting and Structural Resilience.

This project will accomplish the following tasks:

         * Construct an integrated view for different weakening mechanisms through the extension of STZ constitutive laws describing plasticity to include additional geophysical mechanisms for dissipation such as granularity, breakage and thermal effects.

         * Develop better models of friction in fault gouge through reformulation of the STZ theory in terms of concepts more appropriate for strictly granular systems (perfectly hard spheres) in which there is no intrinsic energy scale, to extract the broad spectrum of transition rates and trapping volumes and to capture inherent variability arising from the broad range of grain sizes in fault gouge.

         * Develop a multi-scale approach to the dynamic rupture problem through the resolution of dynamics that arise from these constitutive laws and the material properties of the fault gouge to obtain predictive results for dissipation and fracture from laboratory to tectonic scales.

         * Assess the heat flow paradox through the analysis of energy balance and thermal heating during large earthquakes based on general thermodynamic principles as well as specific information regarding the materials and failure mechanisms that occur in faults.

         * Design control techniques, for improving seismic response of engineering structures, that are motivated by our better understanding for the role of entropic deformation in dissipating energy and increasing toughness in systems like fault gouge and abalone shells.




Jean Carlson      Ralph Archuleta        2/1/12-1/31/16                                       54,000


University of Southern California, Y86552-J


SCEC4 Participation, Project J: Compactivity, Comminution, Heating, and Disorder - The Physics of Granular Fault Gouge

We plan to apply our statistical-thermodynamic theory of granular systems – the Shear Transformation Zone (STZ) theory of local plastic rearrangements – to recent laboratory experiments, molecular dynamics simulations, and seismological observations involving granular fault gouge. Our focus is on three experimental paradigms that occur in shear flow--- compactivity, comminution, and thermally induced changes in material properties. Each of these is of interest to the SCEC Fault and Rock Mechanics community and each has become accessible theoretically based on advances in STZ theory made in the last year. Our goal is to provide a first-principles, quantitative interpretation of the great wealth of experimental data on fault gouge that to date has been treated phenomenologically. The advantage of a physics-based approach is that it enables extrapolation from the lab to the field.


In the first project, we will connect our theory of granular hard-sphere systems [Lieou and Langer, 2012] to the phenomenon of auto-acoustic compaction-- the suppression of shear dilatancy by means of internal acoustic vibration—in steady shear flows, which was recently observed in laboratory experiments [Elst, Brodsky, Bas, and Johnson, 2012]. We will examine how the STZ compactivity (which characterizes local volume fluctuations) is influenced by the shear rate and account for the apparent reduction in porosity due to acoustic vibrations generated at intermediate shear velocities.


In the second project, we will examine frictional weakening mechanisms associated with grain breakage. This involves augmentation of the original STZ theory to incorporate the effects of broad distributions of particle sizes and STZ transition barriers, as was done recently to characterize aspects of the glass transition [Langer, 2012], as well as physical mechanisms for granular fracture and wear [Mair and Abe, 2011]. In geophysical applications, the distribution of particle sizes may be responsible for frequency dependent response and variability in friction characteristics [Marone and Scholz, 1989]. Grain breakage is expected to lead to frictional weakening, and provides a significant pathway for energy dissipation that will help account for the lack of thermal heating during earthquakes.


In the third project, we will build on our recent work involving extensions of STZ theory that include thermally varying material properties [Elbanna and Carlson, 2012]. The next phase will focus on shear banding as an additional weakening mechanism in order to model more realistically the shearing response of gouge layers at high strain rates. We will compare our results with laboratory experiments of Sone and Shimamoto, [2009], that exhibit strain localization and rapid velocity weakening.



Leila Carvalho     Charles Jones   1/1/12-12/31/15                                          450,000


International Potato Center (CIP), SB120184


Regional Climate Variability and Changes in the Central Andes

This collaborative work focuses on regional climate variability and changes over the central Andes with an emphasis on potential impacts on water resources and food security particularly potato crop productions and vulnerability. Research activities will be developed under the theme “Integration for decision making” and divided in the following objectives:


I. Analysis of climate variability and changes in the central Andes This objective will analyze atmospheric reanalysis to characterize climate variability and trends during 1948-present to identify key changes in the South American Monsoon System. In particular, we will develop several observational analyses to identify potential regional atmospheric changes over the central Andes. We will also analyze data from Coupled Model Intercomparison Project version 5 (CMIP5). CMIP5 model simulations are being used for preparation of the next Intergovernmental Panel on Climate Change (IPCC). We will analyze model simulations for the present climate and projections.


II. Development of climate downscaling methods

The specific research problem addressed in this objective will be the development of downscaling methods to properly represent the complex topography of the central Andes and the associated atmospheric variability particularly in precipitation and air temperature. The tasks will include analysis of conventional observations as well as regional climate model simulations. The Weather Research and Forecasting (WRF) model will be used to develop regional simulations over the central Andes. Conventional observations and regional climate model products will be used as inputs for multi-fractal downscaling at high resolutions over the Peruvian Andes.


III. Analysis of climate variability in South America and vulnerability assessments This objective will consist in summarizing the analysis of climate variability and changes in the South American Monsoon (Objective-I) and develop geo-referenced data that will be applied in vulnerability assessments over the central Andes.



Leila Carvalho     Charles Jones   8/1/10-7/31/15                                            370,984


National Oceanic and Atmospheric Administration, NA10OAR4310170


An Integrated View of the American Monsoon Systems: Observations, Models and Probabilistic Forecasts.

This project focuses on the interactions between the North American Monsoon System (NAMS) and South American Monsoon System (SAMS) and identification of common sources and limits of summer season predictability. The main theme of this proposal is to develop a unified view of the American Monsoon System (AMS). The project evaluates the ability of global models from the World Climate Research Program (WCRP) Coupled Model Intercomparison Project (CMIP) to simulate the variability of the AMS in the present climate. The project is comprised of four interconnected main goals. First, the project will investigate the extent to which the annual evolution of NAMS and SAMS and their temporal variability on ISI time scales can be represented with metrics that effectively describe changes in precipitation and atmospheric circulation in the Americas. Second, this will identify regional physical processes and teleconnections that control the interactions between NAMS and SAMS. Third, this project will evaluate the skill of WCRP CMIP coupled models in representing the observed variations in the AMS. Lastly, this project will implement diagnostic monitoring tools, identify sources of potential predictability and develop probabilistic forecasts of the AMS on subseasonal to seasonal scales.

Specific objectives are:

I. Develop and validate indices for a unified approach to monitor and forecast the variability of the monsoon systems in the Americas.

II. Investigate the associations between the two monsoon systems, the importance of regional processes and remote atmosphere-ocean variations on intraseasonal-to-interannual (ISI) time scales in explaining these linkages.

III. Examine the degree to which simulations from the WCRP Coupled Model Intercomparison Project (CMIP-3 and CMIP-5) realistically represent the AMS and associations between the monsoons in the Americas.

IV. Use NCEP Climate Forecast System (CFS) model outputs (reforecasts and operational) to develop probabilistic forecasts of the American Monsoon Systems on subseasonal to seasonal lead times. Identify potential predictability sources of the AMS on ISI time scales.




Leila Carvalho     Charles Jones   Bodo Bookhagen      8/15/11-7/31/16       563,506


National Science Foundation, 1116105


Climate Variability and Impacts on Regional Surface Runoff in High Asia Mountains.

The current state and future fate of the ‘High Asian water towers’ (i.e., freshwater reservoirs at high elevations) are of central importance for water, food, and power supply of densely populated regions in south, east, and central Asia. In addition to the highly seasonal summer rainfall, winter precipitation is important for snowmelt and discharge in the pre-monsoon (spring) season. Runoff from snow is especially significant in the central Asian and western Himalayan regions, where hundreds of millions of people reside, but observation, understanding, and prediction of terrestrial water storage and fluxes remain poorly understood. Quantification of seasonal amounts of rain, snow, glacial and snowmelt waters and associated physical processes are largely unknown, despite their importance to pre-monsoon and dry-season water for irrigation, drinking and power generation.

The main goal of this project is to advance our current understanding of climate processes on regional-to-continental scales and how they affect the water balance in the High Asia Mountains. The project focuses on multiannual-to-decadal variations in the Indian Summer Monsoon (ISM) and winter western disturbances (WD) and their impacts on rainfall, snow and runoff variability in High Asia. The project will focus on three specific objectives:

I. Characterize and investigate multi-annual-to-decadal variations in the Indian Summer Monsoon and western disturbances and their regional impacts on the surface water budget in the High Asia Mountains.

II. Examine the spatiotemporal variability of the surface water budget including changes in rainfall and snow and their relative roles in driving runoff variations in High Asia.

III. Develop case studies to investigate changes in Indian Summer Monsoon and western disturbances seasons and their influences on the long-term variability of snow and associated runoff in the High Asia Mountains. Changes in the Indian Summer Monsoon and western disturbances include extremely wet/dry monsoon seasons, high/low frequency and precipitation intensity of winter storms and teleconnections associated with warm/cold El Niño/Southern Oscillation (ENSO) phases.




Jordan Clark                                              9/1/10-8/31/14                                             185,621


National Science Foundation, OCE-1031352


Collaborative Research: Large-scale, Long-term, Multi-directional, Cross-hole Experiments in the Upper Oceanic Crust Using a Borehole Observatory Network.

This effort will support of multidisciplinary borehole experiments in oceanic crust, to assess hydrogeologic, solute and colloid transport, and microbiological processes and properties at multiple spatial and temporal scales (meters to kilometers, minutes to years). Results of these experiments will comprise a major advance in our understanding of hydrogeologic properties and fluid processes within oceanic crust, and will help to develop new tools and methods that can be applied in many settings. Earlier grants funded engineering design and testing in preparation for these experiments; the present proposal is for support of scientific activities that occurred after IODP Expedition 327, late summer 2010. IODP Expedition 327 drilled and deepened three basement holes and installed three new subseafloor, borehole observatory systems (CORKs).  Expedition 327 included single and cross-hole hydrogeologic testing, to assess multi-scale formation properties, including the nature of hypothesized azimuthal and vertical crustal anisotropy. IODP researchers also initiated a single and multi-hole tracer experiments by injecting a mixture of tracers (including sulfur hexafluoride) during a 24-hour pumping test in one of the new basement holes (1362B), and monitoring for tracer arrival at holes 350 m to 2400 m away. We requested support for two dive programs, in Summer 2011 and 2012 (due to mechanical problems with the research vessel the 2012 expedition was delayed until 2013), followed by analytical and modeling work. The Summer 2011 and 2013 expeditions included: downloading pressure data and collecting borehole fluid samples from several observatories at multiple depth using valves and samplers at the seafloor, exchanging long-term wellhead OsmoSamplers and microbial fluid samplers, and attaching an autonomous flow meter to wellheads (1362B 2011-2013 and 1362A 2013-2014) that could be opened and closed with a ball valve. We fluid discharge from the naturally-overpressured formation was about 5 L/s. UCSB was responsible for analyzing OS copper coil samples for sulfur hexafluoride.



Jordan Clark                                                   6/1/13-5/31/16                             121,801


National Science Foundation, OCE-1260353


Collaborative Research: Completing single- and cross-hole hydrogeologic and microbial experiments: Juan de Fuca Flank.

Below the seafloor lies one of the biggest aquifers on Earth. Here bottom seawater is drawn into basaltic crust and flows vast distances before discharging, driven by Earth’s natural heat loss and associated differences in fluid density, and guided by permeable pathways and basement outcrops that link oceanic and crustal realms. The extent of oceanic hydrothermal flow rivals that from rivers to the oceans, influencing ocean chemistry, crustal properties, and a poorly-understood subseafloor biosphere. However, little is known about the nature of flow paths and rates of flow through the crust, how different crustal regions are connected laterally and vertically, and how this flow influences crustal microbial populations. We are completing a series experiments to resolve processes and characteristics of hydrothermal circulation in the ocean crust, using long-term borehole observatories (CORKs) as perturbation, monitoring, and sampling points. This experiments was initiated in 2010 during IODP Expedition 327 following ocean drilling operations to install observatory infrastructure and instrument systems deep below the seafloor.

We have combined a series of short-term and long-term pumping and discharge experiments, lasing hours to years, with a multi-tracer injection experiment, to quantify solute, dissolved gas, and particle flow velocities, directions, and crustal interactions. Hydrogeologic experiments like these have been performed on land, to elucidate conditions in hydrocarbon reservoirs and freshwater aquifers, but they have never before been attempted in the ocean crust. Using the same boreholes, we are monitoring natural pressure conditions and perturbations, the extent of isothermality in the upper crust, the chemical evolution of borehole and crustal fluids, and the nature and extent of microbial growth in incubators containing chips of rock and minerals.

Cross-hole pressure perturbations have been observed, and sparse wellhead sampling of fluids from one borehole has recovered tracers injected in a different borehole (hundreds of meters away), demonstrating that the hydrogeologic and tracer experiments are working. But the most complete multi-year records of experimental results remain; these samples were recovered during a 12-day ROV/submersible expedition in August 2014. Shore-based activities are on-going and include hydrogeologic and tracer analyses, microbial characterization, and integration of physical, chemical, and microbial data to constrain crustal conditions, properties, and processes.  UCSB is responsible for analyzing OS copper coil samples for sulfur hexafluoride.  



Jordan Clark                                                    10/1/10-12/31/14                                    110,875


WateReuse Association (Foundation), WRF-09-11


Development of New Tracers for Determining Travel Time Near MAR Operations.

The objective of the study was to evaluate two new tracers to determine subsurface travel times near manage aquifer recharge (MAR) sites, which could be used instead of sulfur hexafluoride (SF6) for compliance with the California Division of Drinking Water (DDW), formerly the Department of Public Health (CDPH), groundwater replenishment reuse project (GRRP) regulations.. The new tracers were boron-10 (as 10B enriched borate) and radio-sulfur (35S).  A multi-tracer experiment with the conservative anion bromide (Br-), 10B, and heat was conducted at the test basin near the San Gabriel MAR operations (travel time of a few months), to evaluate the relative performance of the different tracers. This basin is managed by the Water Replenishment District of Southern California (WRD). The experiment showed that 10B and heat are not conservative during near field transport and therefore should not be used as a replacement for SF6.  At two other southern California MAR facilities, WRD’s Rio Hondo Spreading Grounds and Orange County Water District’s Kraemer Basin, time series measurements were made for 35S. The significant result of this experiment is that S should be considered as a viable replacement for SF6. This study addressed issues critical to the operation and regulation of many water reuse projects in California, the United States, and elsewhere around the world by increasing the available tools for evaluating travel times and hydraulic connections near MAR operations.  These data are critical for understanding water quality changes that occur in the subsurface and permitting (in California). Although the California Air Resources Board (CARB) is regulating emission of SF6, a provision was included to allow for exemptions if the researchers can demonstrate a method for the introduction SF6 into the recharge water that minimize its loss to the atmosphere.  A new method was developed using a membrane contactor with a closed circulation system for SF6 to achieve the CARB requirement of minimal SF6 loss. 



Brian Clarke     Douglas Burbank                 9/1/12-8/31/15                                  171,556


National Science Foundation, 12272278


Quantifying Near-Surface Patterns of Bedrock Fractures and Assessing Controls on Fracture Formation.

Rock strength is a well recognized but poorly known variable in landscape dynamics. Such strength plays a key role in shaping landscapes, resisting erosive processes, and modulating landslide hazards. The key factor, however, is not the strength of intact rock, but rather the effective strength of the entire rock-mass at the surface where it interacts with climatic, topographic, and biotic variables. This effective strength is modulated by the development of fractures that weaken the rock mass and make it more susceptible to erosion, physical and chemical weathering, biologic activity, or collapse. We have recently developed a methodology using both shallow seismic refraction surveys bedrock outcrops and laboratory analyses of “intact” samples to delineate variations in fracture density in the shallow subsurface. These new data indicate two common fracture patterns versus depth: rock that is uniformly fractured (apparently by large-scale tectonic forces); and rock with a distinct fracture gradient in an upper layer (apparently due to geomorphic fracturing processes have damaged the near-surface) that overlies a much stronger, less fractured lower layer. Although very promising, this methodology needs to be refined, tested, and explored more thoroughly.



Brian Clarke                                                                  9/1/13-8/31/15                25,549


National Science Foundation, EAR-1324627


Collaborative Research: Differentiating Between Lithologic and Baselevel Controls on River Profiles: Canyons of the Colorado Plateau

We propose a study of the relative roles of lithology and baselevel fall in canyon formation to better elucidate the role of lithologic heterogeneity in landscape evolution in general.  To accomplish this we will study erosion patterns in and around deep canyons on the Colorado Plateau in relation to channel steepness patterns and rock properties. Important to our approach is the concept that the spatial structure of short-term erosion rates in disequilibrium landscapes like the Colorado Plateau reflects the longer-term temporal history of mainstem river incision. Not only do the canyons and surrounding landscapes of the Colorado Plateau provide an excellent natural laboratory for this investigation, but their study also carries significant broader impact and public education potential because of the iconic status of the Grand Canyon and the recent, high profile debate over the antiquity of this dramatic landform (age estimates range from <6 Ma to >60 Ma).


Despite the fundamental, and long-recognized, importance of lithology in landscape evolution, it has received little attention in the quantitative studies of landscape evolution in recent decades. Partly this is because we have lacked the ability to quantitatively measure rock strength at the process scale and partly because until recently lacked firm theory to relate rock properties to river incision processes – limitations that can now be overcome.  We address three fundamental problems of broad interest to Geologists and Geomorphologists: (1) the role of lithology in river incision and landscape evolution in general, (2) how lithologic variability affects, and limits, our ability to interpret river incision history from study of landforms and (3) the controversial incision history of river canyons in the Colorado Plateau. The back drop to our study is the enigmatic Late Cenozoic exhumation history of the Colorado Plateau, but although our results should contribute to solving this long-standing problem, it is not our focus. We frame our study around three testable hypotheses concerning the fundamental controls on landscape evolution encoded in canyon landscapes and the last ~1 Myr of river incision history.


Given the icon nature of the Grand Canyon and the vast number of tourists that visit the canyon each year, public education is essential, especially when geoscience educators use National Parks as case studies for teaching exercises.  As part of this research we will pursue a geoscience education study (part of the graduate student’s time commitment) of the effectiveness of using field analogs to teach about geologic process and landscape evolution, specifically related to canyon incision and relief generation. Folks living on reservation land on the Colorado Plateau are a key target audience. In addition to our public outreach efforts, the proposed study will provide significant training for one graduate student and several undergraduates. All students will interact with the PIs and institutions providing educational experiences for each student that are not typical. Specifically, this research will enhance the opportunities for undergraduates for direct involvement in cutting-edge research.  We will proactively recruit women and underrepresented minorities.




Christopher Costello                            9/1/14-8/31/16                                                       25,164


Conservation International, 1000487


Maintaining productivity and incomes in the Tonle Sap fishery in the face of climate change

Indiscriminate fisheries are fisheries that target multiple species and multiple size classes. These fisheries are very poorly understood relative to single-species target fisheries, yet they feed millions of people. Their response to human-driven changes in freshwater dynamics is almost completely unexplored. The goal of our research is to better understand indiscriminate fisheries and their response to climate change, using one of the largest and most dynamic indiscriminate fisheries in the world as a research testbed. The ecological and social implications of indiscriminate fisheries are particularly important for the world's poor. Major indiscriminate fisheries exist in inland freshwater systems in low-income countries where freshwater fish consumption is a very important part of nutritional security. Protein from large freshwater fisheries are of greatest importance in countries with annual GDP per capita of less than US$1000. Cambodia's freshwater fishery stands out as one of the largest contributors of animal protein to people living in poverty; major components of this fishery are indiscriminate. Here, we will focus on the Tonle Sap Lake of Cambodia, perhaps the world's largest indiscriminate fishery. The Tonle Sap system feeds approximately 3 million people directly and provides income for millions more. The productivity of the system relies on hydrologic dynamics that interact with land use dynamics, making for a complicated system that is impacted in many ways by human actions and will be vulnerable in many dimensions to climate change. As a result of recent ministerial decisions on fisheries management, the Tonle Sap represents a prime example of an indiscriminate fishery, as well as a model of community control and management of a freshwater fishery. These attributes make it a rich resource to inform management of other indiscriminate fisheries and improve the living conditions of communities that depend upon them.



John Cottle                                            5/1/11-10/31/14                                              133,321


National Science Foundation, 1050043


Collaborative Research: Improving the Accuracy and Precision of Monazite and Allanite Geochronology via ID Th-Pb Ages for Reference Materials.

The principal limitation for obtaining high-precision, accurate standard-based 208Pb/232Th ages from monazite and allanite is the lack of appropriate, well-characterized reference materials. Because both monazite and allanite are compositionally variable and SIMS, LA-ICP-MS incur instrumental mass-dependent fractionation, it is essential to closely match standards with unknowns. This proposal seeks to determine isotope dilution (ID) Th-Pb ages for the Th-rich accessory minerals monazite and allanite. Th-Pb ages currently exist for only one reference material that is commonly used-'554'. Consequently, all standard-based geochronologic measurements require an assumption that Th-Pb and U-Pb ages are equivalent. This assumption is unnecessary and, in many cases, invalid. By obtaining high-precision ID Th-Pb ages for a suite of well-characterized, community-wide reference materials, this research will provide a means of independently calibrating Th-Pb ages for minerals that can be linked to fundamental tectonic processes.



John Cottle                                                                    7/1/11-12/31/15            311,385


National Science Foundation, ANT-1043152


Exploring the Significance of Na-Alkalkine Magmatism in Subduction Systems, a Case Study From the Ross Orogen, Antartica.               

This research aims to map and study basement rocks exposed in the Royal Society Range (2011−2012 season) and the Darwin Glacier regions (2012−2013 season) of the TransAntarctic Mountains. The Royal Society Range lies approximately 90km ESE of McMurdo Station in the TransAntarctic Mountains while the Darwin Glacier area is 200 km SW from McMurdo Station, immediately north of the Byrd Glacier. I hypothesize that these two areas represent the northern and southern boundaries (respectively) of a geologically distinct segment within the southern Victoria Land sector of the 550−500 Ma Ross Orogen. I will test our hypothesis in the field by conducting detailed geologic mapping and sample collecting. In subsequent laboratory work we will determine the ages and chemistry of the basement rocks. These two datasets combined will thus build up a more complete picture of the geologic evolution of this part of the TransAntacrtic Mountains.




John Cottle                                      7/1/11-12/31/15                                                            366,356


National Science Foundation, EAR-1119380


How Does the Mid-crust Accommodate Deformation in Large, Hot Collisional Orogens? Insight From the Himalaya-Tibet System.

This research involves target fieldwork aimed at lithotectonic and structural characterization, and specimen collection. Detailed structural mapping of faults and shear zones and analysis of spatial variations in strain paths followed by rocks within the Main Central thrust system will follow the approach previously applied by the P.I.’s to other structures in the Himalaya (e.g. Cottle et al. 2007, 2009a, b; Kellett & Godin 2009; Kellett et al. 2009, 2010; Larson and Godin, 2009; Larson et al. 2010a; Jessup & Cottle, 2010). Macro- scale structural mapping will include documentation of all standard fabrics with an emphasis on lineations, high-strain domains, melt-associated deformation as well as boudins, flanking structures and over-printing relationships. Shear sense and deformation temperatures will be characterized through both micro-structural analysis (following the methods of e.g. Hirth and Tullis (1992)) and through optical and electron backscatter diffraction (EBSD) analysis of crystal lattice preferred orientations (LPO) and the asymmetry of [c] and <a> axes patterns in quartz and feldspar grains (following e.g. Law et al. 1990 and Kruhl, 1998). Diffraction patterns will be collected using an FEI Quanta 400 FEG scanning electron microscope coupled with a HKL Nordlys 2 EBSD camera at UCSB.

Timing constraints on deformation within structures identified in the field will come from U(- Th)-Pb dating of 1) intrusive bodies that either cut or are deformed by the shear zones (Figure 3C); and 2) metamorphic monazite that can be texturally linked to pre-, syn-, and post-kinematic porphyroblasts (see thermobarometry and metamorphic ages sections).


The distribution of deformation domains will provide important information regarding the spatial variations in fabric development during the evolution of the Greater Himalaya series-Main Central thrust system and the relative importance of distributed versus focused (e.g., shear zone) deformation. Within the context of the models proposed, Hypothesis 1 predicts that deformation will be concentrated in the vicinity of the major thrust faults. Furthermore, deformation temperatures attained would be expected to decrease abruptly down structural section. In contrast, Hypothesis 2 predicts that deformation is pervasive throughout the rocks to be examined, and that all rocks were deformed at high temperatures; any change in deformation temperature should be gradational. Thus, understanding the distribution of deformation and its relative and absolute timing and duration of movement will provide a direct test of the competing models. In either case, this study will provide a detailed account of structures including microstructural characteristics and vorticity, both of which provide significant constraints on the structural evolution of the Himalayan front.



John Cottle                                      2/28/12-7/31/14                                                            67,095


US Geological Survey, G12AP20049


Evaluating Mechanisms for Rare Earth Phosphate Mineralization in the Proterozoic Pinto Gneiss, Music Valley, Eastern Mojave, California

Music Valley lies immediately to the north and east of Joshua Tree National Park in the Mojave desert of eastern California. The study area lies within the Valley Mountain and Hexie Mountains 15’ quadrangles, mapped at 1:62500 scale by Dibblee (2008). The Twentynine Palms Mountain and Fried Liver Wash 7.5’ quadrangles provide 1:24000 topographic base for more detailed mapping and targeted sample collection. Field work will involve sample collection of at least 50 bulk rock and 20 alluvial samples from the several previously mapped deposits, including the U-Thor, Uranus 2-6, Baby Blue, and Hansen, and other deposits delineated by Evans (1964). GPS location, field relations, and photographs to indicate the precise location and context of the samples will also be collected. In addition, this study will employ a multi-faceted petrologic, geochemical, and geochronologic approach to determine the mechanism of rare earth phosphate mineralization. The proposed tools for this research include U-Th-Pb geochronology, in-situ Sm/Nd isotope geochemistry, trace element analysis, and chemical mapping of xenotime and monazite grains.

Sampling strategy: 50 bulk rock samples: host gneisses as well as leucosomes, inside and outside of the Th-anomaly, and at several of the deposits identified by Evans (1964) will be collected for further analysis during year 1 of the project. In addition, 20 alluvial samples will be collected in order to make a reconnaissance assessment over a wider to assess the likely spatial extent of the deposit. Analysis will begin with detailed petrographic thin section analysis of bulk rock samples. From this it will be determined which samples contain sufficient REE-phosphates for further study (we anticipate making detailed analyses of a subset of the most appropriate 25- 30 samples over the two year period).

Chemical Petrography: To characterize zoning patterns in xenotime and monazite, chemical mapping by two electron microbeam instruments will be carried out. Preliminary mapping of monazite and xenotime inclusions will be done on a FEI Quanta scanning electron microscope (SEM) equipped with a back-scattered electon detector (BSE). This will allow for the rapid location and identification of monazite and xenotime grains, as well as an initial view to the internal zoning patterns. Following this initial screening, x-ray maps of individual grains will be produced using a Cameca-SX100 electron probe micro analyzer (EPMA) equipped with five spectrometers to measure Y, Th, U, La, Pb and Nd zoning patterns. Distinguishing between zones of different chemical composition will be crucial for in-situ laser ablation. We expect the majority of chemical petrography to be complete by the end of year one.



Carla D'Antonio                              8/16/11-3/31/15                                          600,000


California Energy Commission, 20111150


Quantifying the Impacts of Interactions Between Fire, Invasive Species, and Hydrologic Cycles.

We will examine on-going vegetation change in areas of high fire activity and subsequent changes to hydrologic cycles (e.g., timing and amounts of stream flow, nutrients in run-off) caused by fire in specific watersheds of California, where invasive species have come to dominate over portions of the watersheds or where type conversion is occurring. Our collaborators at UC Berkeley (Max Moritz and postdoc) will evaluate cover changes (trees to shrubs) and their consequences in Sierran watersheds while the UCSB group will focus on southern California coastal mountain ranges and eco-hydrological modeling. At UCSB, we will use a combination of historic aerial photos, GIS and fire occurrence records to evaluate factors contributing to watershed conversion in order to project areas vulnerable to future change.  To study the consequences of land cover change, we will select relatively fine-scale study areas to be compared, stratified according to those that are dominated by native species and those that have largely been “type converted” into non-native invasive species. Local scale measurements of water infiltration, vegetation evapotranspiration, and soil surface conditions will be used to parameterize watershed scale models to predict changes in water yield and nitrate run-off relative to vegetation condition.  Small scale measurements will be used to parameterize and test the ecosystem watershed model, RhesSys to evaluate the potential for largescale changes in water yield due to land cover change.  RhesSys models will be developed for both the Sierran watersheds and a southern California watershed. 




Frank Davis                                            6/1/11-5/31/16                                   2,328,985


National Science Foundation, EF-1065864


Collaborative Research: Do Micro-environments Govern Macro-ecology?

Lead Institution: UC Santa Barbara Collaborators: UC Riverside, UC Berkeley, UC Los Angeles, Arizona State University, Conservation Biology Institute, Desert Research Institute, Conservation International


This project examines the effect of microenvironments (i.e. areas of high habitat suitability for individual species on macroecological processes, including species distribution responses to climate change and consequent extinction risk. Microenvironments have played critical roles in rapid vegetation response to past climate change, such as the emergence from the last glacial maximum. This project tests the importance of these difficult-to-model features in vegetation response to future climate change. The overarching research question addressed is ""How does macroecological response to climate change emerge from finer scale climate and population processes?"


The project uses a combination of modeling and field experimentation to answer this question. A collaborative research team will model microenvironment impacts on species distribution, abundance and diversity under rapid climate change for four tree species across four study sites in the Sierra Nevada and Coast Ranges of California. This proposed research design is a novel combination of site trials, distribution models and population models, incorporating measured (rather than inferred) species' tolerances relevant to microenvironments at scales that vary over five orders of magnitude (30m-3000km). Analytical tools will include reciprocal transplant experiments, field surveys, species trait-based distribution models, population models and biogeographic models of climate change. Physical models of microenvironments are linked to models of tree species occupation of microenvironments, which in turn inform models of population-level responses. Climate change is simulated using Regional Earth Systems Models and statistical downscaling from global climate model simulations. Field experiments examine the response of establishment phase (seedling) dynamics, the life history stage most sensitive to altered climate, through transplanting protocols to lower (warmer) elevations. The frequency of fire in the landscape is projected using correlations of fire to landscape conditions under current climate. Establishment phase and fire information is then used in models of single species population responses and multi-taxa responses in complex landscapes. These population-level models will give clear indication of whether microenvironments change species dynamics in rapid climate change in ways that will dramatically change range-wide and continental-scale biological responses to climate change.



Duane DeVecchio     Dylan Rood     Ralph Archuleta   2/1/12-1/31/16              6,500


University of Southern California, Y86552-K


SCEC4 Participation, Project K: Precise Fault Slip Rates on the Oak Ridge Fault: New age constraints on the Saugus Formation using 36Cl/10Be isochron burial dating ---This project will begin the work of developing the chronology of an important Quaternary strain marker in Southern California, the Saugus Formation. The Saugus is variably deformed across numerous active faults in Los Angeles and Ventura Counties and its inferred age is commonly used to quantify fault slip rates. Yet because the formation is diachronous across the region and few absolute ages exist fault slip rates on many of the largest faults in Southern California are poorly constrained. Until recently the age of Saugus strata (0.2- 2 Ma) lay outside the range of applicability of existing Quaternary geochronological techniques. However, with the advent of recent advances in cosmogenic nuclide burial dating (36Cl/10Be isochron dating), which is capable of precisely dating (uncertainty <5-10%) strata of this age, a new opportunity exists to determine the age of these tectonically significant strata. The resulting chronology of the Saugus Formation will directly contribute to and reduce uncertainties in earthquake hazards assessments associated with the USGS Earthquake Hazard Program, UCERF3, and the proposed SCEC Ventura Special Fault Study Area.


The primary focus of this research is to resolve the two-fold uncertainty in the existing fault slip rate (5.9 mm/a and 12.5 mm/a) of the Oak Ridge fault (ORF), which extends for ~40 km through urbanized Ventura County. Rates are based on the inferred age of the Saugus Formation, with the 2-fold range in the rate reflecting the uncertainty in the upper age of Saugus strata (200-500 ka). Funds from this grant will be used to conduct fieldwork, including geologic mapping and identification of propitious sites for cosmogenic sampling of the top and the bottom of the Saugus Formation. Fieldwork will focus along a North-South transect from the across the Oak Ridge hangingwall north of Moorpark California, where a thick section of Saugus strata are preserved in the Happy Campy syncline.




Jeff Dozier     Ned Bair                1/20/15-1/19/16                               150,215


DA Army Cold Regions Research and Engineering Laboratory, W913E5-15-C-0003


Methods to Estimate and Validate the Spatial Distribution of Snow Water Equivalent (SWE)

Accurate estimates of snow water equivalent (SWE) in mountain watersheds pose a longstanding, unsolved problem. Operational models’ high uncertainty imposes costs for water users. For instance, April to July runoff forecasts for the American River in California’s Sierra Nevada have a median error of 18%, and sometimes exceed 100% [Dozier, 2011]. Uncertainty stems from the heterogeneous nature of mountain snow. Spectral mixing techniques using satellite-based imagery in the visible and near-infrared bands have been successful at mapping snow covered area (SCA) at sub-pixel resolution [e.g., Rosenthal and Dozier, 1996; Painter et al., 2009]. The remotely sensed date of disappearance of snow from each pixel can be combined with a calculation of melt to reconstruct the accumulated SWE for each day back to the last significant snowfall [Martinec and Rango, 1981]. Successful examples of reconstructed SWE include large basins in the Rocky Mountains [Molotch, 2009] and the Sierra Nevada [Rittger, 2012; Guan et al., 2013; Girotto et al., 2014]. Reconstruction’s main advantage lies in its provision of spatially resolved SWE estimates without the need for ground based observations, but its biggest disadvantage is that SWE can only be calculated retroactively after snow disappears. Alternatively, passive microwave (PM) sensors offer real-time global SWE estimates but suffer from several issues, notably signal loss in wet snow [Chang, 2000], saturation in deep snow [Kelly et al., 2003; Takala et al., 2011; Hancock et al., 2013], decreasing SWE with increasing forest fraction [Nolin, 2010; Tedesco and Narvekar, 2010], subpixel variability in the mountains owing to the large (~25 km) pixel size [Vander Jagt et al., 2013], and SWE overestimation in the presence of large grains such as depth and surface hoar [Derksen et al., 2005; Durand et al., 2011].  Overarching goal: The proposed research uses reconstruction to validate and improve real- time passive microwave estimates of SWE, as well as validating reconstruction itself.



Jeff Dozier        James Frew          6/24/11-6/23/16                                       1,425,210


National Aeronautics and Space Administration, NNX11AK35A


Error Analysis of MODIS Fractional Snow-Covered Area and Snow Albedo in Mountain Regions.

With the significant maturation of Earth science products in the EOS era, we are on the verge of true quantitative integration of these high-resolution, spatially explicit data records into water resource management and research. Snowmelt runoff forecasting in mountainous areas, such as the western United States, has developed as empirical models forced by sparse, in situ measurements of snow water equivalent that lie primarily in subalpine regions. Not only do the seasonal forecast models already have large errors in some years, they rely on a data record that assumes stationarity, and, therefore, are theoretically ill suited for water manage- ment in a changing climate. Moreover, they are unable to accurately address water resources during extreme events, such as persisting spring snow or new snowfall in the alpine zone above almost all measurement sites.

In response to this need for better assessment of the snow resource in mountain areas, new Earth System Data Records that use MODIS data have become available. However, they have not been rigorously validated, and uncertainties and the possible presence of systematic error are not known. In this investigation, we propose to undertake this necessary validation, through four years because the products will evolve. The specific Earth System Data Records are:

·        Daily MODIS fractional snow cover.

-        MODIS fractional snow cover based on the normalized difference snow index originally developed for Landsat [Dozier, 1989; Hall et al., 2006], available from Terra (product MOD10A1) since 2000 and from Aqua (product MYD10A1) since 2002 [Salomonson and Appel, 2004, 2006].

-        MODIS fractional snow cover based on spectral mixing [Painter et al., 2009], available for the Sierra Nevada since 2000 but produced on demand for any MODIS scene. The al- gorithm will be used for the NOAA/NOHRSC National Snow Model starting in water year 2010-11 and has been adopted for the GOES-R Advanced Baseline Imager (ABI), sched- uled for launch in the 2015 timeframe.

·        Snow albedo of the fractional snow cover, based on choosing the snow endmember from spectral mixing that minimizes the residual error [Painter et al., 2009]. A snow albedo prod- uct is also available for the normal “binary” (snow vs no-snow) snow-covered area product [Klein and Stroeve, 2002], but it is usually applied to continuous snow cover.

·        MODIS fractional snow cover and albedo, smoothed and interpolated across time and space to compensate for cloud cover, off-nadir viewing, and data dropouts [Dozier et al., 2008]. The analyses are available as monthly data cubes, during the snow seasons, for the Sierra Nevada since 2000.

The coupling presented here of fractional snow cover and the albedo of that snow provides water managers with spatially and temporally dense data records that populate modeling in- puts for forecasting and research. Their use in snowmelt models and reservoir operations would be advanced by our proposed investigation, which would validate the products, analyze the structure of errors, and advise users of caveats and likely accuracy. Of greatest interest is their potential combination with surface data and energy balance models to help estimate the

-1-spatial distribution of snow water equivalent (SWE). SWE can be interpolated in near real time from snow pillow and snow course measurements, constraining the surface measurements by satellite snow-cover estimates [Fassnacht et al., 2003]. In addition, SWE can be reconstructed from satellite snow-cover estimates and snow-depletion models [Martinec and Rango, 1981; Cline et al., 1998; Molotch, 2009].



Jeff Dozier                                       4/1/12-9/30/16                                            662,351


National Aeronautics and Space Administration, NNX12AJ87G


Assessing Water Resources in Remote, Sparsely Gauged, Snow-Dominated Mountain Basins.

Our objective is to estimate seasonal snow volumes, relative to historical trends and extremes, in snow-dominated mountains that have austere infrastructure, sparse gauging, challenges of accessibility, and emerging or enduring insecurity related to water resources.


To judge feasibility, the proposed effort looks at two regions, a validation case and a case representing the characteristics outlined above. For the validation case, we propose to use the Sierra Nevada of California, a mountain range of extensive historical study, emerging scientific innovation, and conflicting priorities in managing water for agriculture, urban areas, hydropower, recreation, habitat, and flood control. For the austere regional focus, we will examine southwest and south Asia, where some of the most persistent drought in the world causes food insecurity and combines with political instability, and occasional flooding, to affect US national security. Our approach will use a mix of satellite data and a spare modeling approach to present information essential for planning and decision making, ranging from optimization of proposed infrastructure projects to assessment of water resources stored as snow for seasonal forecasts.


We will combine optical imagery (MODIS on Terra/Aqua, VIIRS on NPP), passive microwave data (SSM/I, AMSR-E), retrospective reconstruction with energy balance calculations, and gridded feed-forward, uncoupled land surface modeling to establish retrospective context. Specifically, we will use the period spanning the decade-long record from Terra and Aqua to bracket the historical record. In the California Sierra Nevada, surface measurements have sufficient spatial and temporal resolution for us to validate our approach, which we will extend to the Hindu Kush of High Asia where surface data are sparse and where access presents significant difficulties. The world's mountains accumulate substantial snow and, in some areas, produce the bulk of the runoff. In ranges like Afghanistan's Hindu Kush, availability of water resources affects US policy, martial and humanitarian operations, and national security. The rugged terrain makes surface measurements difficult and also affects the analysis of remotely sensed data. The analysis would leverage several techniques developed from NASA-sponsored research and use NASA instruments. While using data from the Sierra Nevada for validation, the activity would also improve water resource assessment in that region where statistically based forecasts occasionally produce significantly errors. Partner organizations include the US Army Corps of Engineers and the NOAA Office of Hydrology, organizations that work together in the NOAA-led IWRSS (Integrated Water Resources Science and Services).




Jeff Dozier                                       10/1/10-9/30/14                                            33,972


National Science Foundation, EAR-1015057


Rapid Quantitative Snow Stratigraphy for Avalanche Forecasting Using Near-Infrared Photography.

Over two snow seasons, we made detailed time-series observations of snow stratigraphy and sintering throughout the depth profile of the snowpack. We used optical microscopy and scanning electron microscopy to measure snow grain geometry and chemical composition. Our findings agree with laboratory experiments and sintering theory. Because of the time required for sampling and microscopy, we sampled in just two locations. We now plan to extend our sampling to learn how stratigraphy and sintering vary spatially. Other studies we recently published examine how spatial variability is the driving mechanism that produces power laws in avalanche depth distributions. We will use a new method, near-infrared digital photography, for rapid quantitative stratigraphy and to cover the range of variability over a large mountain. We will apply this technique to snow stability evaluation and the general study of snow metamorphism. Since the measurement of snow properties with near-infrared photography is a new technique, it has not been widely used, and there are no peer-reviewed studies that apply it to snow stability. While the heterogeneity of grain sizes at the snow surface has been investigated with remote sensing, there are many fewer studies of the heterogeneity of snow properties in buried layers, especially at the slope scale. Our experience, extensive instrumentation, site accessibility, and large number of avalanche control records make our field location, Mammoth Mountain, an ideal site to test how near-infrared photography can be used for avalanche hazard evaluation. We will relate mechanical strength to specific signs of instability, called lemons, i.e. yellow flags. We propose that four of five common lemons can be identified with nearinfrared photography alone. We will also use spatial statistics and machine-learning techniques to classify stable and unstable near-infrared snow profiles. The funding requested will supply materials and travel expenses for one PhD student, who is supported by an ORISE fellowship through the U.S. Army Corps of Engineers Cold Regions Research and Engineering Laboratory.



Thomas Dunne                                11/15/07-11/30/15                                      286,582

                                                           11/15/07-2/28/10                                          53,491


California Department of Water Resources, 460007708


San Joaquin River Restoration Program

This project involves field and computational research to assist the California Department of Water Resources (DWR) in providing Chinook salmon habitat in Reach 1 of the San Joaquin River.  Completion will involve both field data collection and computer modeling activities designed to answer the question:  "How will the form and bed conditions of the gravel bed reach of the San Joaquin River respond to an alteration of flow regime and to manipulation of the sediment within the reach, and how will the changes affect the quality of habitat for Chinook salmon?"




Erica Fleishman                              2/1/10-12/31/15                                          266,000


BP Exploration - Alaska, SB100049


Cumulative Effects of Anthropogenic Underwater Sound on Marine Mammals.

There are no standards for assessment of cumulative effects of underwater sound. Quantitative assessments typically consider a single source whereas qualitative assessments may include multiple sources but rarely identify response variables. As a step toward understanding cumulative effects of underwater sound, we are developing complementary quantitative and qualitative methods for assessing the aggregated sounds from multiple sources received by marine mammals. As a case study to refine the transferable methods, we are assessing sounds received by migrating bowhead whales (Balaena mysticetus) in the Alaskan Beaufort Sea during their 2008 autumn migration. The quantitative method models the sound field from multiple sources and simulates movement of a population through it. The qualitative method uses experts to assess responses of individuals and populations to sound sources and identify potential mechanisms. These methods increase the transparency of assessments.



Joan Florsheim     Edward Keller                                                           3/6/14-6/30/15     100,000


Cal EPA Water Control Board, 13-068-120


San Gregorio Creek Watershed Sediment Budget

The objective of this project is to quantify changes in sediment delivery and storage processes in the San Gregorio Creek watershed, San Mateo County, CA, over the historical period.  We will map erosional and depositional landforms from recent aerial LiDAR images and historical aerial photographs into a GIS, and conduct field measurements and other analyses.  Specific questions to address through development of a rapid sediment budget (Reid and Dunne, 1996) for various time periods, include: 1) what are the significant active geomorphic processes (e.g. gullies, slides, incision) that deliver sediment to channels? 2) how do current and/or historical landuse activities influence sediment delivery rates relative to pre-disturbance natural background rates? 3) have landuse activities caused significant changes in channel sediment storage and sediment supply in alluvial channel reaches, and or significant changes in the rate of sediment supply to the lagoon? 4) what are the relationships between grain size distributions in channels and bed mobility, pool filling, and sediment supply rate?  Addressing these questions will increase our knowledge about the effects of anthropogenic and climate disturbances on geomorphic processes at the scale of a small coastal California watershed.



Joan Florsheim     Edward Keller      9/15/13-2/29/16                                       22,866


National Science Foundation, EAR-1359734


Collaborative Research: RAPID: Short-and Long-term Sediment Dynamics Following Wildfire in Chaparral Environments

Wildfire disturbs sediment erosion, transport, and depositional processes in profound ways.   Because of the acute reduction in vegetation and organic matter, soils burned by fire lose cohesion and infiltration capacity.  Along with enhanced soil water repellency, runoff and flooding potential are elevated years after fire.  Post-fire hydrologic and sedimentologic responses are extremely complex, varying with burn severity, rainfall regimes, geophysical characteristics, and vegetation recovery.  Although researchers have studied these processes for more than 70 years, predicting post-fire effects remains elusive, and physically-based models of post-fire runoff and erosion are not yet complete.  Part of the difficulty is that temporal windows for observing post-fire effects are comparatively short, with direct measurements tending to span only part of the recovery period (typically less than three years).  Equally important are longer-term perspectives, however, in regards to how wildfire impacts Earth surface processes in the context of landscape evolution.  Developing predictive understanding of both short- and long-term effects is critical to the future of our planet, especially in an era of changing climates that have increased frequencies and magnitudes of wildfires.  This proposed RAPID project focuses on production and delivery of dry ravel, a characteristic and immediate post-fire response on steep slopes in the western USA.  Dry ravel is a dry-season erosion process whereby gravel sediment moving down hillslopes by gravity becomes trapped by vegetation.  Burning vegetation releases this sediment, enabling its accumulation at margins of ephemeral channels.  Dry ravel therefore provides a significant source of sediment into river channels after fire in chaparral environments.  The investigators will quantify the volume of dry ravel sediment derived from the recent Springs Fire that burned Big Sycamore Canyon in southern California during May 2013 Using Terrestrial LiDAR scanning (TLS) augmented by field surveys.  Additionally, the investigators have geomorphic data spanning over 25 years for Big Sycamore Canyon and two comparable basins nearby with different fire histories.  Thus, comparing the dry ravel processes at these three sites will enable a compelling story of both short- and long-term sediment dynamics following wildfire in chaparral environments.  These data are critical toward developing models of the dynamics of dry ravel for further development and testing. 





James Frew                                      8/1/13-7/31/16                                            250,364

National Science Foundation, 1302236

III: Medium: Collaborative Research: Citing Structured and Evolving Data

Citation is an essential part of scientific and scholarly publishing: it is used to gauge the trust placed in published data and, for better or worse, is an important factor in judging academic reputation. Now that much scientific publishing – especially data publishing – takes place through a database rather than conventional journals, how should something that is found in a database be cited? More generally, how should digital data that is stored in a repository with internal structure and which is subject to change be cited? This is the case for the very large number of curated databases through which much scientific publishing now takes place; it is also true of most scientific data collections, which are seldom stable.


There has recently been substantial interest in the problem of data citation, and various organizations have proposed structures for the format and content of citations; however most proposals do not address issues of structure and change that are intrinsic to databases. The focus of this proposal is to develop a framework for data citation which takes into account the following issues: (1) the potentially very large number of possible citations; (2) citations should be both human and machine readable; and (3) citations must conform to specifications prescribed by both the publishers of the data and by the various standards that are being established. All these give rise to interesting computational challenges: citations must be generated automatically from the data; the source data must be guaranteed to support the generation of these citations; and the generated citations must be guaranteed to conform to the specifications. Of course, as with any computational problem, all this must be done efficiently.


Citation is also closely related to provenance and issues of reproducible results. Workflows, executable papers, and microcitations have all been proposed to support reproducible analysis of data. The work of this project will explore the connections between these ideas and, where possible, establish a common framework.


For many databases, the publishers and authors have a clear idea of how they would like their data to be cited, and there is enough information in the database to enable these citations to be generated once the right computational machinery has been developed. However, interesting questions arise when a set of data to be cited is arrived at by means of a query, in which case the query itself may need to be included (an actionable citation). In other cases the navigational structure needed for meaningful citation – such as in the case with linked open data or RDF, which are ostensibly large amorphous graphs – may be missing. The challenge here is to find techniques for discovering or adding that structure to provide the necessary basis for citation.




James Frew                                      10/1/12-9/30/15                                          372,000


University Industry Research Corporation, SB130034


Intel Science and Technology Center for Big Data - ISTC-BD

This project will focus on constructing EarthDB, a SciDB database of primary Earth observation data. Primary data is original sensor outputs or human observations, not subject to any reformatting, reprojection, aggregation, or other transformations beyond those required to digitize and ingest them. SciDB will allow common Earth science analytical operations (e.g., coordinate transformations, aggregation, spatial algebra, etc.) or data fusion (e.g., joins across multiple heterogeneous data types and representations) to be expressed as database queries against original observations, providing heretofore unavailable flexibility and traceability. We will populate the EarthDB pilot with data sources that challenge both scalability and heterogeneity. We have already demonstrated the feasibility of managing and processing MODIS "level 1" swath data (the lowest-level digital representation of this Earth imaging satellite sensor) in SciDB.




Phil Gans                                          7/1/13-9/30/15                                              31,915


Great Lakes Exploration, SB140046


Exploration of the Rochford Area, Black Hills, South Dakota: An Integrated Geologic Mapping and Framework Study

The Black Hills of South Dakota have historically been very successful in terms of economic mineral deposits, including the Homestake Mine, which produced over 30 million ounces of gold throughout its operational history.  It has been determined that the Rochford mining district, which lies just to the south of the Homestake district, is a promising new prospect for exploration.  This area has been selected by Great Lakes Exploration due to 1) USGS maps reporting significantly anomalous gold values 2) similarity of mineralization to the Homestake mine, and 3) the relative lack of mining claims throughout the district.


Great Lakes Exploration has expressed a need for a more detailed geologic understanding of the Rochford area in order to continue their exploration, and this proposal outlines the goals, specific types of work, research plan, and anticipated results that we will aim for throughout the next two years.


We propose to undertake an integrated geologic framework study, with the goal of providing Great Lakes Exploration with a more comprehensive understanding of the stratigraphy, mineralization, and structural controls for the Rochford and surrounding areas.  Our focus will be mainly on mapping the Rochford area geology, focusing on iron formation trends and structural features with a focus on identifying structural controls or influence on the gold occurrences.


Our overriding objective is to gain a better understanding of the geologic framework of the Rochford area, with the expectation that this understanding will clarify why the anomalous gold occurrences appear where they do, including how and when the mineralization occurred, and how much subsequent structural disruption there has been.  We believe that this type of geologic framework study will significantly aid efforts to find any potentially economically valuable targets in the area and help guide efforts to extend these studies throughout the region.




Phil Gans                                                       4/1/14-5/31/15                                                                         25,677


US Geological Survey, G14AC00080


Geological Mapping of the Southwestern Whipple Mountains and Eastern Mopah Range, Southeastern California: Unraveling the Eruptive and Structural History of a Synextensional Miocene Volcanic Center

The lower Colorado River Extensional Corridor (CREC) is a premier natural laboratory for investigating large-magnitude continental extension. This proposal requests funds to facilitate two graduate student geologic mapping projects within the breakaway region of the CREC in southeastern California. The primary goals of this project are to: a) produce publishable digital geologic maps – a context map at 1:24,000-scale and two inset maps at 1:10,000 - with cross-sections and supporting data, allowing us to answer important scientific questions in the process, and b) to train two graduate students in the making of high-quality geologic maps and conducting field-based geological research. The students will map two independent but complementary areas:  Mary Kate Fidler (Ph.D.) will map a 80 km2 area of faulted and tilted volcanic successions in the SW Whipple Mountains and eastern Mopah Range with the goal of understanding the detailed eruptive and faulting history of the shallow levels of the core complex.  Beau Gentry (MS) will map a 50 km2 area in the Whipple Mountains that includes an extensive Miocene dike swarm in the footwall of the core complex with the goal of assessing the amount of tilting and intrusive dilation. In addition, both students and PI will map the enveloping 200 km2 area at 1:24,000 to provide geologic context. Our proposed study area is being actively explored for detachment-hosted gold and rare earth element mineral deposits, and this new data will be invaluable to these efforts. The PI will train and mentor the two graduate students during all phases of the project, which will primarily involve detailed mapping and field based structural and stratigraphic analysis. The mapping will form the basis for two graduate theses that will also include extensive petrologic, 40Ar/39Ar and U-Pb geochronologic studies funded by other sources.



Brad Hacker                                     2/1/09-1/31/15                                            227,664


National Science Foundation, 0838264


Collaborative Research: Testing Channel-Flow Models Using Middle-Crustal Rocks of North Himalayan Gneiss Domes

Recently formulated thermal-mechanical channel flow/extrusion models which postulate that the middle crust exposed in the high Himalaya and southern Tibet was a low-viscosity, ductile material, bounded above and below by coeval normal- and thrust-sense shear zones, respectively, that flowed and extruded to the south. In light of these provocative models, it is time to test the channel flow hypothesis by determining whether the predicted low-viscosity channel is exposed in the North Himalayan gneiss domes and whether it shows the expected combination of southward flow and vertical thinning.


Flow within a channel can range from pure Couette flow to Poiseuille flow, or be a combination of the two. Couette (or linear) flow develops between rigid plates moving relative to one another and is characterized by simple shear (high vorticity number) with the highest velocities toward the top or bottom of the channel. Poiseuille (or parabolic) flow develops between stationary rigid plates in which a horizontal gradient in lithostatic pressure produces the highest velocities in the center of the channel and decreasing, but opposite, shear velocities toward the top and bottom of the channel. Poiseuille flow is characterized by high vorticity number (simple shear) at the top and bottom of the channel, decreasing vorticity number (mix of simple shear and pure shear or general shear) toward the center of the channel, and low vorticity number (pure shear) at the center of the channel.


This project will document the deformation vorticities, finite strain, temperatures, and timing during ductile flow, combined with existing thermobarometric, geochronologic, and thermochronologic data, will provide a comprehensive spatial, thermal, and temporal history of deformation and flow in middle crustal rocks, southern Tibet. Furthermore, our studies, combined with similar published and ongoing studies in middle crustal rocks exposed in the high Himalaya, will provide an unprecedented view of middle crustal flow parallel to the transport direction over a distance of 50100 km. Characterization of deformation over a broad range of spatial, thermal, and temporal scales is critical to testing models of middle crustal channel flow/extrusion within a collisional orogen and will provide invaluable insight into the role of the middle crust in the geodynamic development of the HimalayanTibetaan orogenic belt, and orogenic belts in general.    




Brad Hacker                                     4/1/13-3/31/16                                              75,489


National Science Foundation, 1249486


Collaborative Research: The Role of Fluids in Intermediate-Depth Seismicity and Wedge Anisitrophy: Case Studies for Cascadia and Alaska, With a Comparison to Japan.

Large amounts of fluid enter Earth’s mantle through subduction of hydrated oceanic sediment, igneous crust and mantle. During subduction, a series of progressive devolatilization reactions release fluid from the slab. Some of these fluids enter the overlying mantle wedge and trigger melting that in turn leads to arc volcanism. While it is clear that fluids play an important role in the dynamics of subduction zones the precise fluid pathways remain unclear. Details of the fluid budget, the location of dehydration events, and the precise role of fluids in triggering intermediate-depth seismicity also remain unquantified. Recent seismological work has provided important new insights into the position of intermediatedepth seismicity in the slab and the role of seismic anisotropy in the interpretation of seismic velocities. The first allows us to test whether fluids are responsible in generating intermediate-depth seismicity; the second leads to improvements in the seismological mapping of fluids and melts within the mantle wedge. The strong non-linear influence of fluids on material properties and wave propagation makes it essential to use a forward modeling approach, where we predict the physical state of wedge and slab by dynamical models that take into account the best constraints from mineral physics and petrology. By comparing the seismological expression of these models with the observations we can iteratively improve the dynamical/petrological models. In the research proposed here we will develop new high-resolution 2D/3D finite element models of the dynamics and thermal structure of subduction zones. We will use petrological and mineral physics constraints to guide the choices for rheology and to predict the seismological expression of these models; in particular for velocity anisotropy. Using seismological modeling we will compare the predictions with observations and use an iterative approach to develop a suite of models that satisfy the observations. We will use these models to study the dynamics and structure of the subducting slab and mantle wedge at two GeoPRISMS primary sites (Alaska and Cascadia) and the well-instrumented Japan subduction system to address three main questions: 1) Does intermediate-depth seismicity indicate the presence of fluids? 2) Can we constrain the composition and deformation of the mantle wedge from observations of seismic anisotropy? 3) Can we use improved predictions for the petrological structure of the slab and anisotropic structure of the wedge to improve the locations of subduction-zone earthquakes? The focus sites are well-studied “warm” and “cold” subduction zone end-members and provide excellent testing grounds for the main research hypotheses.



Brad Hacker                                     6/1/11-5/31/16                                            266,136


National Science Foundation, EAR-1008760


Collaborative Research: The Suturing Process: Insight from the India-Asia Collision Zone.

The suturing of continental fragments following the subduction of intervening oceanic lithosphere is a fundamental process in lithospheric dynamics and the shaping and growth of Earth’s continents. However, our understanding of this fundamental process remains limited. Can we use geological observations in some particularly well-exposed suture zones to make general statements about how landscapes and sedimentary basins evolve during suturing? What geodynamic processes lead to decreases in plate convergence rate? Are Mediterranean-style rollback of remnant oceanic lithosphere and opening of marginal oceanic basins characteristic of all or most pre-climax collision zones? Do presuturing ophiolite obduction and intraoceanic arc–continental margin interactions leave predictable signatures in suture zones? How is the upper continental plate preconditioned by pre-suturing tectonism and how does the upper plate evolve during the transition from oceanic to continental subduction? Is there a predictable mode of deformation in the downgoing continental plate? And what do we expect the balance to be among continental subduction and erosive removal of mass from a collisional orogenic system? We propose to address such questions through a 4-year investigation of the archetypal India–Asia collision zone (IACZ) in southern Tibet that involves 19 investigators and 14 graduate students from 9 different institutions. Techniques to be employed include structural geology, stratigraphy, geochronology, thermochronology, stable and radiogenic isotope geochemistry, igneous and metamorphic petrology, paleomagnetism, and geodynamical modeling. We aim to determine the: (1) evolution of paleogeography and paleoelevation during the transition from oceanic subduction to mature continental collision; (2) geodynamic processes that caused marked decreases in India–Asia convergence rate; (3) role of Mediterranean-style opening and closing of marginal basins prior to terminal collision; (4) metamorphic evolution of lower-plate (Indian) rocks in response to ophiolite emplacement, possible intra-oceanic arc collision, and continent collision; (5) role of pre-collisional Andean-style magmatism and deformation in preconditioning the upper-plate lithosphere and how this Andean-style system evolved during continent collision; (6) paleogeography of the Neo-Tethys margins and the history of subduction, exhumation, thickening, and underthrusting/rollback of Greater Indian continental lithosphere; and (7) spatial pattern, magnitude, and history of erosion and sediment dispersal. Our aims are ambitious but feasible because of the presence of rich, but as yet untapped geological records of appropriate age (Cretaceous to Miocene) adjacent to and within the India–Asia suture zone. Geodynamical modeling of suturing processes will run in parallel with the geological studies; this vital effort will help guide the evolving project. Whereas the IACZ will be used as our lab, we expect that our project deliverables (3-D pre-, syn-, and post-suturing reconstructions at the lithosphere scale) will provide fresh, well-constrained, and testable ideas about the suturing process and its role in continental crustal genesis.  



Brad Hacker     Andrew Kylander-Clark      7/1/12-6/30/16                            329,701


National Science Foundation, EAR-1219942


What Determines Whether the Deep Continental Crust Flows?

Understanding why and how the deep continental crust flows at high temperature and pressure is central to understanding a broad range of geologic processes, including flow in response to gravitational potential energy gradients, seismicity, plate flexure, plate-boundary deformation, and so on. There is however, uncertainty about how to quantify the influence of many factors— including rock composition, temperature, grain size, strain, fluid activity, and/or degree of melting—on flow of the continental crust at high temperature and pressure. This proposal presents an unusual opportunity to test which factors permitted or inhibited the flow of continental crust at high pressure and temperature in a well-understood orogen.



Brad Hacker  Andrew Kylander-Clark      3/1/14-2/28/17                         304,644


National Science Foundation, EAR-1348003

What Causes UHT Metamorphism: Lengthscales and Timescales

Four endmember hypotheses for the cause of UHT metamorphism--subduction beneath an arc, collisional thickening + plutonism, strain heating, and extreme collisional thickening—will be tested using Ti-in-zircon, Ti-in-quartz, and Zr-in-rutile thermometry and pseudosection modeling, in conjunction with laser-ablation split-stream U/Th-Pb dates and trace elements of monazite and zircon.






Brad Hacker                          9/1/14-8/31/16                                                 173,765


National Science Foundation, EAR-1419751


Collaborative Research: Did the Pamir gneiss domes and salient form by northward underthrusting of India or southward subduction and rollback of Asia?

The Pamir orogen is distinguished by a pronounced, northward-convex salient and a spatially extensive, orogen-parallel suite of gneiss domes. Both the salient and gneiss-dome suite are thought to have developed synchronously and largely since Miocene time. At depth, the thick crust (≥ 65 km) of the Pamir is underlain by a cold mantle lid, interpreted to be northward underthrust Indian lithosphere; it is bound in the north by a southward-dipping zone of intermediate-depth seismicity that has been attributed to intracontinental subduction of Asian lithosphere. We propose to test two end-member ‘tectonic drivers’ that may genetically link all of these features: (1) a lower-plate-driven, relatively rapid and short-lived phase of northward rollback/retreat of a southward-subducting slab of Asian lithosphere, during which the Pamir gneiss domes accommodated significant net horizontal extension (~150 km) and growth of the Pamir salient; versus (2) an upper-plate-driven, protracted northward underthrusting/indentation of Indian lithosphere, which forced vertical exhumation of Asian mid-crust above it and southward subduction of Asian lithosphere beneath it. These two end-member scenarios are not mutually exclusive in that they may have acted in concert or played varying roles in space and time. Nevertheless, they make contrasting predictions at the scale of the entire orogen that can be assessed with geologic investigations. We focus this project on testing end-member model predictions for the kinematic, metamorphic, and magmatic evolution of the gneiss domes. Our approach will integrate (i) metamorphic petrology and monazite U/Th-Pb geochronology and heavy REE analysis to quantify the history of prograde and retrograde metamorphism, (ii) geologic mapping and structural analysis to constrain the kinematics of gneiss dome exhumation; (iii) moderate- and low-temperature thermochronology to quantify the history of exhumation; and (iv) U-Pb geochronology and isotope analysis of zircon (Hf) and titanite (Nd) to quantify the history and sources of Cenozoic magmatism.


Laura Hess                                       1/6/12-1/5/16                                           1,139,723


National Aeronautics and Space Administration, NNX12AD27G


Land and Resource Use on the Amazon Floodplain Under Evolving Management Systems and Environmental Change: Fish, Forests, Cattle, and Settlements.

We propose to carry out integrated remote sensing, field, and modeling studies in order to quantify key drivers of land cover and land use change on the lower Amazon floodplain. We will use existing and new satellite (ALOS PALSAR, Landsat TM), aerial (historic aerial photography and videography), and socioeconomic data sets to address the following questions:

1) What have been the main trends in land cover change in the Lower Amazon region over the last fifty years?

2) What are the economic strategies of the three main groups of resource users: ranchers, smallholders and commercial fishers?

3) What has been the impact of the settlement and co-management policies now being implemented on land and resource use and floodplain vegetation cover?

4) How might climate induced changes in the Amazon flood regime impact floodplain land and resource use and consequently vegetation cover?

The study area for the proposed work encompasses the Amazon floodplain from the western border of the state of Para, Brazil, downstream to the mouth of the Xingu River.



Laura Hess    John Melack Thiago Silva  1/14/14-1/13/17                                   346,115


Virginia Polytechnic Institute and State University, 426670-19B03


Impacts of floods and droughts on aquatic macrophytes, forests, and fisheries of central Amazonian river floodplains

The annual flood of the Amazon River is the world’s largest inundation event, flooding about 300,000 km2 for six or more months each year, with water levels reaching as high as 15 meters. This seasonal inundation connects river channels to adjacent floodplains, driving immense biological and ecological productivity. The ecosystem services derived from this floodplain system provide food and livelihoods for local people. However, climate and land-cover changes are increasing the frequency and severity of extreme climate events such as droughts and intense rain, resulting in greater variability and decreased predictability of the annual flood. This disruption may adversely affect fishery yields and floodplain vegetation productivity. Despite the importance of Amazon inundation dynamics for both ecosystem health and local livelihoods, we know relatively little about the vulnerability of these systems to changing climate and extreme events. This project will increase our understanding of  the mechanisms linking basin-wide hydrology, river-floodplain connectivity, and the productivity of floodplain ecosystems by 1) quantifying the relationship between flood extent and the productivity of fisheries and floodplain vegetation and 2) modeling the effects of deforestation and extreme climatic events on inundation dynamics under historic and alternative future scenarios. This work is funded by NASA's Interdisciplinary Research in Earth Science program.




Patricia Holden                                             1/1/15-11/30/18                                                           1,987,869


California Department of Water Resources, 14-476-550


Microbial Source Tracking in the Santa Barbara Region

Coastal marine waters in human developments may be contaminated by fecal indicator bacteria whose presence signals fecal pollution that impinges on public health and coastal fisheries.  New DNA-based technologies can assist in determining if fecal pollution is associated with human waste and thus human pathogens, or if other animal hosts or natural sources explain. Further, such technologies, if applied in a watershed context within a qualified field study design, can enable determining fecal sources, e.g. failed civil infrastructure whose repair by owners can remedy the pollution and restore water quality.  To date, several beaches in the Santa Barbara area have been researched for fecal pollution since fecal indicator bacteria concentrations in coastal waters were chronically elevated.   Three beaches in Santa Barbara remain a high priority as determined by the Clean Beach Initiative in CA: East Beach at Sycamore, Leadbetter Beach, and Goleta Beach.  In this project, the lower watersheds of each beach will be characterized for sources of fecal pollution, including evaluating infrastructure location and age.  Hypotheses will be developed regarding potential fecal sources that impinge on surf zone water quality.  Hypotheses will be tested using state of the art approaches in microbial source tracking applied within a field sampling program for each beach.  Results will be used to inform stakeholders, i.e. water quality and infrastructure managers in the region, regarding sources that can subsequently be remediated.  This is a three year project that builds on expertise in the Holden Lab group previously demonstrated in various State of CA clean beach initiatives and in the Santa Barbara region.



Patricia Holden                                                                     9/9/14-1/31/15                                     24,991


City of Santa Barbara, 21400222


Verification Monitoring in Santa Barbara

This research is to perform verification monitoring (VM) in Santa Barbara. In the SB region, there are beaches for which microbial source tracking (MST) and fecal source remediation were previously performed. VM is needed to verify that human fecal contamination sources have been remedied, and that other controllable sources such as domestic dogs and faulty septic systems are not causing ongoing surface water contamination. The overall and long-term goal is to improve microbiological water quality and public health at Santa Barbara beaches, which are very popular recreational and tourism destinations.



Patricia Holden                                                         1/1/14-1/31/16                                     194,209


Southern California Coastal Water Research Project (SCCWRP), 9406


Determination of DNA-based Fecal Marker Aging Characteristics for Use in Quantitative Microbial Source Tracking

The goal of the proposed work is to understanding how aging of fecal pollution affects the ability of managers and policy makers to interpret results from microbial source tracking assays. Microbial source tracking assays have been developed that are highly sensitive and specific, and this is a great advancement in tracking sources of microbial pollution in recreational waters. Our team has evaluated modern assays for their specificity and sensitivity, and has applied well-performing assays to identifying sources contributing to regional microbiological water pollution.  However, interpreting assay results likely depends on the source of pollution, when it was released, and how it changed, or “aged”, within the environment.  The relative abundances of assay markers are expected to change significantly during pollution source aging in the environment, but the magnitude of those changes and the factors that contribute are unknown.  This makes interpreting assay results from environmental samples very difficult.  The overall goal of this project is to determine aging characteristics and contributing factors in the field, and in the lab. 





Matthew Jackson                                          7/1/15-12/31/15                                               15,143


American Samoa Power Authority, SB150139


A preliminary geochemical characterization of lavas from a 600 meter drill core in Tutuila, American Samoa

This research effort will describe, sub-sample, and geochemically characterize the drill core in Tutuila, which represents a revolutionary opportunity to constrain the evolution of a Samoan volcano and to advance geological research in Samoa. Work at the drill site will include: logging all rock material that is cored, describing the petrographic characteristics of the core, and subsampling the core to build a basic petrological understanding of the core. The samples will then be used to generate an important preliminary geochemical dataset to constrain future work on Tutuila.




Matthew Jackson                             7/1/13-9/30/15                                            184,293


National Science Foundation, OCE-1153894


Collaborative Research: Using the Rurutu hotspot to evaluate mantle motion and absolute plate motion models

Hotspot tracks have long been used as an absolute reference frame for absolute plate motion  (APM) models. However, the two longest-lived Pacific hotspot tracks, the Hawaiian-Emperor and Louisville seamount chains, exhibit hard-to-explain differences in behavior prior to 45 Ma: (i) The Hawaiian-Emperor show a pronounced “kink” while the Louisville chain is gently curved, and (ii) while the Louisville hotspot likely remained geographically fixed (results of recent IODP Expedition 330), Hawaii drifted 15° south. Differences in hotspot fixity may arise from ridge capture and ridge-related flow modifying plume upwelling, the mantle wind tilting plumes, movement of the plume base, or large-scale reorganizations of tectonic plates affecting global mantle flow. As a result, these complicating processes diminish the accuracy of APM models for the Pacific Plate in particular, and our understanding of mantle dynamics in general. 


We propose that adding a third, long-lived Pacific hotspot track can help to deconvolve the effects of plate versus plume motions. Recent evidence suggests that the Rurutu hotspot is long-lived (~100 Ma), follows a hotspot track midway between Hawaii and Louisville, and shows a pronounced 155° bend like Hawaii between 35-55 Ma. Combining Sr-Nd-Pb-Hf geochemical and 40Ar/39Ar age data will allow us to test the hypothesis that the Rurutu hotspot is both geochemically continuous and and possibly the longest-lived hotspot in the Pacific.


We propose to obtain new age and geochemical data for the critical region around the poorly characterized Rurutu hotspot bend. This data will help define a third Pacific hotspot track that will help deconvolve plate from plume motions between 40 and 80 Ma. Specifically, we propose to test the following two hypotheses: (1) The Rurutu hotspot is a long-lived, geochemically-distinct hotspot like the Hawaiian and Louisville hotspots; and (2) the Rurutu hotspot exhibits a pronounced bend, and the timing of the Rurutu bend matches the timing of the (pronounced) Hawaii-Emperor and (less pronounced) Louisville bends at ~50 Ma. To test these hypotheses we propose to: (1) Dredge 20 key volcanoes at the Rurutu hotspot bend--defined by the intersection of the Tuvalu and Samoa chains--to determine its precise location and timing; (2) Geochemically characterize 60 samples to evaluate a link to the modern-day Rurutu hotspot; (3) Compare the predicted Rurutu age progression from various APM models to 45 new 40Ar/39Ar ages to be measured from these seamounts.


This data from the Rurutu hotspot will allow us to trace the longest-lived hotspot in the Pacific and construct an APM model for the Pacific Plate that is less sensitive to plume motion.

The University of Texas at El Paso (UTEP) is a Hispanic Serving Institution and the only US research-intensive doctoral university with a Mexican-American majority student population. We will recruit the most promising undergraduate students from PI’s classes taught at UTEP, Boston University (BU) and Oregon State University (OSU). We will bring 9 nine undergraduate students on the cruise, including an IDES (Increasing Diversity in Earth Sciences) undergraduate student from OSU Furthermore, the project will support three graduate students, who will gain seagoing experience and will work on the sample suite at their respective home institutions. At sea we will organize four outreach activities: (1) run a real-time cruise website, (2) produce new bathymetric maps for the Seamount Catalog (, (3) organize an at-sea seminar series for the further education of the nine undergraduate students, and (4) provide compositional analysis training for the undergraduates using a portable LIBS (Laser Induced Breakdown Spectroscopy) system. Finally, the nature of the research will foster the ongoing collaboration between the research programs at UTEP, BU and OSU, where the funding helps to support their analytical facilities. This project will also support 2 young investigators (Konter, Jackson).



Matthew Jackson                             9/2/13-1/31/15                                              99,395


National Science Foundation, EAR-1430610


Isotopic diversity in Mangaia melt inclusions: Mantle source or crustal assimilation?


Olivine-hosted melt inclusions (“inclusions” hereafter) are trapped by growing phenocrysts in magma conduits at depth and provide “snapshots” of diverse melt compositions before complete melt aggregation. Inclusions reveal major and trace element diversity that is not clear from analyses of whole rock lavas alone and the origin of this diversity continues to be a source of vigorous debate. One end member hypothesis is that the diversity in inclusions reflects heterogeneity in mantle source compositions. Alternatively, the diversity of inclusion compositions may result from magmatic processes, including crustal assimilation.


In a groundbreaking discovery, extreme Pb-isotopic variability—spanning 50% of the range identified in global ocean island and MORB lavas—was measured in olivine hosted melt inclusions from a single lava collected from the island of Mangaia (Cook Austral Islands). While many of the Mangaia inclusions host a Pb-isotopic component similar to lavas from the island, a surprising result was that some inclusions host less radiogenic Pb-isotopic ratios never before seen in Mangaian lavas. The origin of the Pb isotopic diversity in these inclusions is not well understood and the discovery of isotopic variability gave rise to a host of fundamental questions. Why is it that the inclusions are not isotopically representative of the bulk magma? Is it because inclusions from a single lava trap melts from isotopically-diverse mantle sources? Or, does the isotopic diversity reflect assimilation of the lithosphere during magma ascent? Unfortunately, bulk abundances of elements most sensitive to crustal assimilation (like B, Cl and K) have never been paired with Pb-isotopic compositions in the same inclusions from Mangaia. As a result, it has not been possible to evaluate whether the Pb-isotopic variability in Mangaia inclusions relates to mantle source variability or crustal assimilation.


In an attempt to evaluate the origin of the isotopic variability in inclusions from Mangaia, the PI used start-up funds to undertake a pilot study with his student (Ms. Rita Cabral) in which 14 inclusions from Mangaia were analyzed for major, trace and volatile elements. The data from the pilot study are intriguing and hint at a possible role for crustal assimilation. However, the data are limited and robust conclusions cannot be drawn without additional data, and mantle source variability is possible. In particular, Pb-isotopic measurements on the inclusions are necessary to determine whether proxies for crustal assimilation relate to the Pb-isotopic variability. Thus, this proposal seeks funding to make additional measurements to test the following hypotheses:

1.) If the Pb isotopic diversity in Mangaia inclusions is a result of crustal assimilation processes, the Pb-isotopic compositions will correlate with indices of assimilation (e.g., high Cl and B).

2.) Alternatively, the isotopic diversity in Mangaia inclusions reflects diverse mantle sources beneath Mangaia that contribute isotopically-heterogeneous melts to inclusions.


To test these hypotheses, this proposal seeks funding to measure 87Sr/86Sr (which is also sensitive to assimilation of seawater and crustal materials) and Pb isotopic ratios and major, trace and volatile abundances in the same inclusions, and expand the study to include a larger suite of inclusions from three Mangaia lavas. The proposed measurements will constrain the relative roles of magmatic processes and mantle sources in generating heterogeneous inclusions, and will be important for understanding magma transport and emplacement processes in the lithosphere.




Matthew Jackson                              6/1/14-12/31/15                                                           111,566


National Science Foundation, EAR-1348082


Collaborative Research: Using sulfur isotopes to identify subducted Archean crust in modern oceanic hotspot lavas

A consequence of modern plate tectonics is that subducting ocean plates transport oceanic crust and sediment into the mantle. However, the fate of the subducted package--oceanic crust and sediment--in the mantle is poorly understood. A long-standing hypothesis maintains that subducted materials residue in the mantle for an extended, but unknown, period of time and are then recycled back to the Earth's surface in regions of buoyantly upwelling mantle and melted beneath hotspots. If this hypothesis is correct, ocean island basalts (OIB) erupted at hotspots should exhibit geochemical signatures associated with the crustal protoliths that were injected into the mantle at a subduction zone in the geologic past. However, it has been difficult to unequivocally detect geochemical signatures of ancient subducted materials in hotspot lavas. This project will use measurements of mass independently fractionated sulfur (MIF-S) isotope signatures--made using two complementary techniques--in key hotspot lavas to trace crustal cycling from the surface, through the mantle and back again.



Matthew Jackson                                          8/1/14-7/31/17                                     31,556 


National Science Foundation EAR-1347377 


Collaborative Research: The role of oxygen fugacity in calc-alkaline differentiation and the creation of continental crust at the Aleutian arc 


Geochemical exchanges between the Earth’s surface and interior at subduction zones drive major changes in magmatic composition that potentially generate Earth’s continental crust. Among the key characteristics shared by bulk continental crust and some subduction zone magmas is calc-alkaline affinity, a rapid draw-down in Fe concentration early in a magma’s cooling history. Most hypotheses for explaining calc-alkaline differentiation from a primary magma invoke a combination of the effects of elevated H2O and oxygen fugacity (fO2), both of which are common in arc magmas, on the early solid phase assemblage when arc magmas begin to crystallize. The relative importance of H2O, fO2 and magmatic bulk composition in generating calc-alkaline magmas, however, remains an outstanding and important question. Moreover, although the elevated H2O contents of arc magmas are generally thought to derive from the subducted lithosphere, no such consensus has been reached for the cause of elevated fO2 in arc magmas. Contrasting models link oxidizing processes either to an oxidizing flux from the subducted plate, concomitant with (though not directly caused by) the addition of H2O, or to an oxidizing process in the overriding plate (e.g., crystallization, degassing), through which magmas pass before eruption. Resolving the key roles that H2O, fO2, and magmatic bulk composition play will have important implications for models of how Earth’s continents initially formed and have grown through time. Lavas of varying calc-alkaline affinity, from strongly calc-alkaline to mildly tholeiitic, erupt along the Aleutian arc, making it an ideal natural laboratory for constraining the petrogenesis of these magma types. This study will provide critical new constraints on the fO2 of variably calcalkaline magmas in the Aleutian arc, and explore how fO2 is linked to magmatic H2O, contributions from the subducted plate, and various differentiation processes, through the combined study of melt inclusions, whole-rocks, and petrological experiments. To do this, we will measure dissolved volatiles, Fe3+/ΣFe ratios, and isotopic signatures of melt inclusions and/or whole-rocks from the Eastern and Western Aleutians, and pair these natural studies with experimental constraints on the effects of H2O, fO2, and bulk composition on the phase equilibria of Aleutian parental magmas.    




Matthew Jackson     John Cottle     Brad Hacker      Matthew Rioux   Syee Weldeab

                                                           9/1/14-8/31/17                                            524,244


National Science Foundation, EAR-1429648


MRI: Acquisition of a Thermal Ionization Mass Spectrometer (TIMS) for high-precision research of the Earth's mantle, crust and oceans

The Earth Science Department at UCSB has maintained a core strength in radiogenic isotope geochemistry since the 1960s, from the Thermal Ionization Mass Spectrometry (TIMS)-based geochronology and geochemical advances of George Tilton and James Mattinson to the modern laser ablation split-stream (LASS) inductively coupled plasma mass spectrometer (ICP-MS) facility currently operated in the department. Four young PIs leading this project (Jackson, Cottle, Rioux and Weldeab) were trained on modern TIMS instruments and actively utilize TIMS-based measurements in their current NSF-funded research; the students and post-docs of PI Hacker also make extensive use of TIMS in their research. However, a modern functioning TIMS is lacking at UCSB. This project will replace the 30-year-old MAT261 TIMS at UCSB to enhance the success of the research programs of the PIs and their ability to teach and mentor graduate and undergraduate students. The arrival of the new instrument will coincide with the completion of a state-of-the-art, metal-free clean lab built as part of PI Jackson’s start-up. The new TIMS facility at UCSB will: 1) enable new fields of discovery by opening up new analytical avenues for research (e.g. ultra-precise 142Nd/144Nd, precise analyses of sub-nanogram quantities of Sr and Nd isotopes, and high-precision U/Pb ages on (sub-) single zircons); 2) transform UCSB’s analytical capabilities, permitting development of cutting edge new analytical techniques that combine high precision TIMS with in situ isotopic and elemental analyses using the laser ablation multi-collector (LA-MC)-ICP-MS and electron-probe microanalyzer (EPMA); and 3) carry the excitement for research and discovery in analytical geoscience to the next generation of researchers and teachers. The new TIMS at UCSB will enable transformative research in studies of the Earth’s crust, mantle and oceans.




Chen Ji                                             8/15/14-1/31/15                                            54,630


Total S.A. (France), SB150037


Collaborative Project Between Total and University of California, Santa Barbara: Developing and testing a method to simultaneously inverting moment tensor solutions and locations for micro-seismic events near a high velocity interface

Barnett CEDF project was conducted on May 2011, including nine stages of hydraulic fracturing experiments on two horizontal wells CEDF 5H and CEDF 8H. To achieve a better determination to the source depth, every stage was recorded by 2 down-hole arrays. However, this dataset has three known limitations. First, the two arrays were not synchronized. Second, the relative aperture of the observational arrays is small. If assuming the spatial interval of two geophones is 50 ft, the length of the vertical array is about 600 ft and that of the horizontal array is around 400 ft. Both of them are much smaller than the distances between the micro-seismic events and the closest geophones, which are up to 3500 ft. Third, the hydraulic fracturing treatments were conducted along two horizontal wells, which locate right above a high velocity layer. The first arrivals of induced seismicity then can be either direct Pd phase or head wave Pn phase. The error in phase identification leads to the error in locations. A better velocity structure is needed. Considering these limitations, the source locations based on only the P and S wave picks shall always include significant error, in particular the source depth. Here we conduct a synthetic experiment to explore the difference in observed waveforms caused by the source depth, relative to the high velocity interface. Analogous to the velocity structure found during Barnett project, in this synthetic experiment we let the P-wave velocity change from 3.5 km/s (14000 ft/s) to 4.5 km/s (18000 ft/s) across the interface.




Chen Ji      Ralph Archuleta          2/1/13-1/31/16                                              25,000


University of Southern California, Y86552-I


SCEC4 Participation, Project I: Developing and testing Realtime finite fault inversion and ground motion prediction algorithms using ShakeOut synthetic datasets

The Great Southern California Shake-Out ( is a NEHRP-coordinated, multihazard response exercise based on an Mw 7.8 rupture scenario of the southern San Andreas fault (Jones et al., 2008) in order to improve public awareness and readiness for the next great earthquake in southern California. Several kinematic and dynamic rupture scenarios (Graves et al., 2008; Olsen et al., 2009) had been created to artificially break a 305 km long segment of the San Andreas fault, from Bombay Beach, on the Salton Sea, to Lake Hughes, 20 km northwest of Palmdale. Multiple groups have preformed the deterministic ground motion modeling for low frequencies (<1Hz) using SCEC CVM4 velocity structure and some of results were in good agreement (Bielak et al., 2010). Graves et al. (2008) also generated the broadband (0–10 Hz) ground motion simulations, which combines a 3D deterministic approach at low frequencies (<1 Hz) with a semi-stochastic approach at high frequencies (>1 Hz). Currently, this unique dataset has been used yearly for the ShakeOut earthquake drill, which had 8.6 million participants this year. Here we propose to use it as a benchmark to test algorithms of quick finite fault inversion and ground motion prediction. We propose to address the following questions:

1) How quick can we determine the focal mechanism, seismic moment of this scenario earthquake using the new MDC approach?

2) How quick can a finite fault source model based on current algorithm be available?

3) What is the spatial-temporal resolution using current strong motion and high rate GPS stations?

4) Can we improve the results with additional stations? If so, where are their locations? Note that the previous simulations produced the waveforms at dense surface grids, allowing us to address this subject without additional expensive forward calculations.

5) How well will the predicted strong ground motion be? Considering the limited waveform information used to constrain the realtime finite fault, the quick solution might not be very precise. Then what is the quality of the predicted ground motion parameters such as PGV and intensity?

In the end, as suggested by committee, efforts will focus on internally operating this

realtime system in UCSB and USGS Pasadena office. We also attempt to incorporate the

USGS realtime GPS data flow into the system.




Chen Ji                                             2/1/12-1/31/16                                              30,000

Ralph Archuleta                             


University of Southern California, Y86552-R


SCEC4 Participation, Project R: Characterization of induced micro-seismicity associated with one hydraulic fracturing experiment near the San Andreas Fault, Central CaliforniaWith an agreement between UCSB and Venoco, we are able to access micro-seismic observations of one multi-stage hydraulic experiment. The experiment was conducted on a site only 8 km away from the San Andreas fault in Central California. This will allow the following three research activities: 1) Improve the location and detecting limitation of microseismic events using a linear array of receivers. All research activities rely on precise event locations.  Due to cylinder symmetry, we cannot locate earthquakes using only the travel-time information collected by such a sub-vertical array; the polarity information must be used. Most uncertainties in locations result from the relatively large uncertainties in polarization analysis. We expect that the multiple path effects of a cluster of events shall be similar, the relative locations of these events shall be much better. The relocate earthquake catalog will be used to track the migration of micro-seismic events during the post-stages periods. 2) Focal mechanisms. A single-azimuth data set (as in single well monitoring) in the far field cannot resolve the dipole perpendicular to the plane of stations and the hypocenter [Vavrycuk, 2007]. However, we could exclude the unresolvable moment tensor (MT) component in a suitable coordinate system and determine the class of MTs constrained by the data [Jechumtalova and Eisner, 2008]. As the initial attempt, we will specially focus on the events with single-phase. 3) Stress drop of seismicity induced by hydraulic fracturing. For small magnitude events, reliable determination of corner frequency requires accurate knowledge of Qp and Qs, which can be constrained using spectral ratio derived from perforation shots [Eaton et al., 2014]. A better constraint to stress drop may help us to distinguish the events directly associating with hydraulic fracking and induced tectonic earthquakes along the fault.




Chen Ji                                             2/1/12-1/31/16                                              11,000

Ralph Archuleta                             


University of Southern California, Y86552-S


SCEC4 Participation, Project S: M 7.x SIV-Benchmark Simulations for greater L.A. Region

This collaborative project will develop the specifications and synthetic data for the next Source Inversion Validation (SUV) benchmark problem (2015/2016). The overall action plan, time line, and roles of each team are as follows:

• April 2015, Teams Caltech/ UCSB: define macroscopic rupture specification, in consultation with SCEC’s Community Fault Database, previously generated scenario ruptures (e.g. Cybershake) and the SIV-requirements in terms of complexity of the rupture and its radiated spectral contents

• May 2015, Teams KAUST / Prague: develop the complete space-time description of the finite-fault rupture model, based on the above specifications; small-scale variability in slip, rupture speed, rise time will be included using the k2-square‐model or pseudo‐dynamic source simulations; we will examine whether spontaneous dynamic rupture simulations are feasible, and preferable over kinematic scenarios

• June 2015, Team UCSB: compute initial set of teleseismic synthetics using the “standard” approach by the UCSB group (same as in the USGS finite-fault inversion approach) • June 2015, Team Caltech: generate regional-scale synthetics and teleseismic data for back- projection analysis

• June-July 2015, Teams KAUST / Prague: generate local synthetics (seismograms and GPS) in 1D, and 3D model, including multi-scale random perturbations in the velocity structure

• July 2015, Team KAUST: Generate near-field data set and synthetic GPS; disseminate synthetic data for inversion validation, computed in a fully deterministic velocity structure (e.g. “no noise” synthetics)

• August 2015, Team KAUST: Generate and distribute various datasets, computed with multi-scale random variations in near‐source velocity structure (e.g. “noisy” synthetics)


In particular, the UCSB team will be involved in the following tasks:

Task 1. Define the source model In coordination with the Caltech team, we will help to defining the source for the benchmark scenario, a hypothetical large rupture in Southern California based on the following general characteristics: Magnitude between 7 and 7.4, such that the teleseismic data clearly show finite-fault effects; thrust-faulting mechanism, potentially on a buried fault; location in the greater L.A. region.

Task 2: Generating the Synthetic Data for finite fault Source Imaging In coordination with Caltech team, we will generate synthetic seismograms for the benchmark of finite fault source imaging methods. Two sets of synthetic data will be produced. The first set of data is constructed precisely using 1D earth model. The data noise caused by scattering-attenuation in earth crust structure will be included in the second set of synthetic data.

Task 3: Finite fault inversion using local and teleseismic waveforms Finite fault inversions using local and teleseismic data will be conducted. The impact of inaccurate Green’s functions will be investigated.




Charles Jones     Leila Carvalho        7/15/11-6/30/16                                     466,314


National Science Foundation, AGS-1053294


The Madden-Julian Oscillation and Predictability of Extreme Precipitation in the United States

Extreme precipitation events are among the most devastating weather phenomena and are oftentimes associated with loss of life and property. The Madden-Julian Oscillation (MJO is the most prominent form of tropical intraseasonal variability in the climate system and has significant influences on the occurrence of extreme precipitation and forecast skills in the medium-to-extended ranges. The main goal of this proposal is to advance our understanding of the influence of the MJO on the predictability of extreme precipitation in the contiguous United States on lead times of 1-14 days during boreal winter. The specific objectives are:

I. Examine how the amplitude of the MJO modulates the predictability of extreme precipitation.

II. Investigate the relationships between the life cycle of the MJO and predictive skill of extreme precipitation.

III. Study the mechanisms by which the MJO influences the predictability of extreme precipitation.

The project has two main elements: 1) develop a detailed analysis of the relationships between the MJO and its impact on the predictive skill of extreme precipitation, 2) Investigate teleconnection mechanisms by which distinct properties of the MJO may have different impacts on the predictability of extreme precipitation. The proposal will test the hypothesis that variations in the characteristics of the MJO (e.g., amplitude, duration and eastward propagation speed, primary and successive events, phase evolution and El Niño /Southern Oscillation- ENSO state) have different influences on the predictability of extreme precipitation.



Arturo Keller      Sangwon Suh          6/16/14-8/31/15                                     109,921


Cal EPA Toxic Substances Control, Department of, 13-T3804

Chemical Life Cycle Database and Visualization Tool

Many consumer products contain chemicals that are known to be detrimental to human health and the environment. However, due to the current lack of regulation, chemical content disclosure and consumer awareness, most manufacturers have little incentive to replace chemicals-of-concern (COCs) with safer alternatives. Assembly Bill 1879 requires DTSC to develop the Safer Consumer Products Regulations that establish a process to identify products that pose high risk to humans and the environment. Once identified, the regulations require manufacturers to evaluate safer alternatives to COCs in those products by following an AA protocol and considering the impacts of the COCs and alternative formulations from life cycle (LC) perspective. By integrating LC thinking into the AA, manufacturers can avoid shifting environmental burdens and making environmentally unfavorable substitutions. California State regulations permit DTSC to compile a list of 1,200 candidate COCs. The list of candidate chemicals can be found at DTSC must identify consumer products containing COC’s and compile guidance for AA. The regulations apply to any COC – containing product sold, distributed, supplied or manufactured for sale in California. In March of 2014, DTSC issued a list of 3 high-priority products of concern. DTSC is researching other specific product/chemical combinations of interest.  The newly established Chemical Life Cycle Network (ChemLCNet) project at the Bren School, UCSB, will be developing a toolkit to assist manufacturers, governments and researchers to determine the life cycle environmental implications of existing and new chemicals. The toolkit will be instantiated as an open-access, interactive web-based tool that implements a parametric life cycle assessment (LCA) model of chemicals production, use, and end of life.



Arturo Keller     Roland Geyer      4/23/15-6/30/16                                            93,500


Cal EPA Toxic Substances Control, Department of, 14-T3952


Pilot Study on Alternatives Assessment

Many consumer products contain chemicals that are known to be detrimental to human health and the environment. However, due to the current lack of regulation, chemical content disclosure and consumer awareness, most manufacturers have little incentive to replace chemicals-of-concern (COCs) with safer alternatives. Assembly Bill 1879 requires DTSC to develop the Safer Consumer Products Regulations that establish a process to identify products that pose high risk to humans and the environment. Once identified, the regulations require manufacturers to evaluate safer alternatives to COCs in those products by following an AA protocol and considering the impacts of the COCs and alternative formulations from life cycle (LC) perspective. By integrating LC thinking into the AA, manufacturers can avoid shifting environmental burdens and making environmentally unfavorable substitutions.




Arturo Keller                                   10/1/13-7/31/14                                              9,995


Electric Power Research Institute, 00-10001423


Publication on "Use of InvEST to evaluate ecosystem services"

This research is related to generating a peer-reviewed publication from the work done by Dr. Keller’s team at UCSB for EPRI, using the InVEST model to evaluate ecosystem services. The Natural Capital Project’s InVEST toolkit is the result of a collaborative effort between Stanford University, World Wildlife Fund, and The Nature Conservancy ( The InVEST tool consists of the following models:


1. Biodiversity: Habitat Quality & Rarity

2. Carbon Storage and Sequestration

3. Reservoir Hydrologic Balance

4. Water Purification: Nutrient Retention

5. Sediment Retention Model: Avoided Dredging and Water Quality  Regulation

6. Managed Timber Production Model

7. Crop Pollination


Modeling of proposed landuse changes at an AEP property was completed in December 2012, with a final report to EPRI submitted at that time. The current work will transform that final report into a peer-reviewed publication.




Arturo Keller                                   11/1/11-2/28/15                                            83,554


Electric Power Research Institute, EP-P42069/C18398


Modeling Nutrient Credit Calculations in Ohio River Basin

The scope of this research includes the following tasks:

1. WARMF model simulations to support credit estimation

UCSB will provide supporting information from available WARMF model simulations to assist in calculating credit values between credit suppliers and identified coal-fired power plant buyer facilities. These efforts will also include updated assessments of credit needs based on WQT drivers applicable to each potential buyer.

2. Participate in two ORB committee meetings

UCSB will participate in two ORB committee meetings to share WARMF model simulation results and integrate findings or their assessments into other tasks being addressed by the project team.

3. Evaluate pilot trades and test an interstate trading framework

UCSB will run WARMF simulations to assess the potential water quality outcomes of proposed trades.





Arturo Keller                                   8/1/13-7/31/14                                              45,000


National Science Foundation, CBET-1343638


Second Sustainable Nanotechnology Conference (2013)

The Sustainable Nanotechnology Conference will be held in November 3 - 5, 2013 in Santa Barbara, California, supported in part by National Science Foundation resources. The 2013 conference will build on the previous year’s focus on lifecycle assessment, green synthesis, green energy, industrial partnerships, and environmental and biological fate, and will include additional emphasis on economic and societal aspects of nanotechnology. In particular, sessions on Sustainable Manufacturing, Tools for Achieving Sustainable Nanotechnology, Nano-economics, and Nano science and engineering in agriculture and food systems will serve to provide more emphasis to these aspects of sustainability.



Arturo Keller     Patricia Holden     Hunter Lenihan         Barbara Harthron

Galen Stucky     Roger Nisbet          Bradley Cardinale      Joshua Schimel          

William Freudenburg                       Ed McCauley              Sangwon Suh

                                                           9/1/08-8/31/14                                         8,250,820


National Science Foundation, SB090050


CEIN (2008-2014) Predictive Toxicological Assessment and Safe Implementation of Nanotechnology in the Environment.

The UC Center for Environmental Implications of Nanotechnology (UC CEIN) studies the effects of nanomaterials on a range of biological systems in terrestrial, freshwater, and marine environments. From this research, the UC CEIN will design a comprehensive risk-ranking model, based on the potential toxicity, mobility, and persistence of the nanomaterials. With the rapid development of nanotechnology, little is known about the possible environmental, health, and safety impacts of nanomaterials.

UC CEIN research is primarily conducted at UC Los Angeles and UC Santa Barbara, with several important partner institutions. Within the UC CEIN, UCSB takes the lead on fate and transport, ecotoxicological, and risk perception studies, collaborating primarily with researchers at UCLA, UC Davis, UC Riverside, University of Texas at El Paso, Columbia University, and University of British Columbia.



Arturo Keller     Patricia Holden     Hunter Lenihan     Galen Stucky     Joshua Schimel Roger Nisbet      Barbara Harthorn Sangwon Suh        Robert Miller      Jay Means

                                                           9/1/13-8/31/18                                         2,373,447


National Science Foundation, SB140059


CEIN (2013-2018) Predictive Toxicological Assessment and Safe Implementation of Nanotechnology in the Environment

The UC Center for Environmental Implications of Nanotechnology (UC CEIN) studies the effects of nanomaterials on a range of biological systems in terrestrial, freshwater, and marine environments. From this research, the UC CEIN will design a comprehensive risk-ranking model, based on the potential toxicity, mobility, and persistence of the nanomaterials. With the rapid development of nanotechnology, little is known about the possible environmental, health, and safety impacts of nanomaterials. UC CEIN research is primarily conducted at UC Los Angeles and UC Santa Barbara, with several important partner institutions. Within the UC CEIN, UCSB takes the lead on fate and transport, ecotoxicological, and risk perception studies, collaborating primarily with researchers at UCLA, UC Davis, UC Riverside, University of Texas at El Paso, Columbia University, and University of British Columbia.                     




Arturo Keller                                   3/31/11-3/30/16                                          103,713


Ohio Water Development Authority, SB110060


Water Quality Modeling of the Ohio State Component of the Ohio River Basin Water Quality Trading Program.

We will implement the WARMF model for the two sections of the Ohio River,

(USGS HUC 0503 and 0509) that run through Ohio, as well as the Great Miami River (HUC 0508) watershed (Figure 2). For hydrological connectivity, small sections of surrounding states will also be modeled. For those major tributaries that are not yet modeled (e.g. HUC 0502, Monongahela) and that drain into this section of the Ohio River, we will use the ORSANCO monitoring data as a placeholder for the flows and loads from these watersheds. This proposed project will benefit from our existing efforts funded by USEPA, since we have already established the connections with Ohio EPA and ORSANCO to obtain the needed point source and observed water quality information. Implementing the model involves obtaining a number of datasets such as topography (digital elevation model), hydrologic network and observed hydrology from USGS; land use data from the 2001 National Land Cover Dataset, supplemented with the 2008 Cropland Survey for Ohio from USDA; point source and water quality observations data from Ohio EPA; ORSANCO monitoring data. The TWG project has allowed us to develop a number of software tools and algorithms for processing these large datasets to more rapidly implement each new watershed. If we did not have these tools, the cost of implementing the model for these three HUCs (0503, 0508 and 0509) would be approximately twice the proposed budget, given the large area considered. The watersheds will be modeled at the 10-digit HUC level, as shown in Figure 2. For practical purposes, the models are implemented as distinct subwatersheds that can be run independently or together in a master project. Thus, if someone needs to run a scenario for a small section within a watershed, it is not necessary to run the entire master model. Data set collection and incorporation into the model will take approximately 3 months. Once the model is implemented and calibrated, the model will be used to develop the “trading coefficients” for the entire state of Ohio. This involves evaluating the effect of a load reduction in a given location, and its impact on the rest of the downstream watersheds. A matrix of the trading coefficients will be generated, for use in the broader WQT program. The matrix will also be displayed graphically using ArcView or any other accepted Geographical Information System software. A number (approx. 20) of trading scenarios within Ohio will be evaluated, to illustrate the use of the model for WQT. The final report will detail the model implementation, calibration, analysis of the WQT scenarios, and an explanation of the trading coefficient matrix. A proposed water quality monitoring program in support of the WQT program for the state of Ohio will also be included in the final report.




Bruce Kendall                                  8/1/11-7/31/15                                            260,763


National Science Foundation, DEB-1120865


Collaborative Research: Demographic heterogeneity in landscapes and communities

Variation in phenotypic traits occurs within all populations. This, in turn, creates variation in demo- graphic traits — the propensity to survive more or less, or to have more or fewer offspring (contrast with the actual life history an organism experiences — its demographic fate; see Kendall & Fox 2003), as well as individual growth and dispersal rates. While ecologists do use models (like linear matrix models) that classify individuals by age, stage or size, and sex, most assume that in doing so they have captured sufficient variation, so that further variation is simply noise of small amplitude. This is not necessarily the case. This variation in traits occurs even when within categories such as age, stage, size, or sex. We use the term “demographic heterogeneity” to refer collectively to the variation in birth, death, growth and dispersal rates among individuals in an age, stage, or size class.

Demographic heterogeneity can be produced by various mechanisms including genetic variability (Yashin et al. 1999, Ducrocq et al. 2000, Gerdes et al. 2000, Casellas et al. 2004, Isberg et al. 2006),spatial heterogeneity in the habitat(Gates and Gysel 1978, Boulding and Van Alstyne 1993, Menge et al. 1994, Winter et al. 2000, Franklin et al. 2000, Manolis et al. 2002, Bollinger and Gavin 2004, Landis et al. 2005), unequal allocation of parental care(e.g., Johnstone 2004; Manser&Avey 2000), seed heter- omorphisims(e.g., Silvertown 1984; Venable &Burquez M 1990), maternal family effect (Fox et al., 2006), learned feeding preferences (Bolnick et al. 2003) and social rank (e.g., von Holst, Hutzelmeyer, &Kaetzke 2002). Demographic heterogeneity is taxonomically widespread. For example, heterogeneity in survival has been found in crocodiles (Isberg et al. 2006), baboons (Bronikowski et al. 2002), birds (Wintrebert et al. 2005, Fox et al. 2006), wild plants (Beckage and Clark 2003, Landis et al. 2005), domestic animals (Ducrocq et al. 2000, Casellas et al. 2004), and humans(Yashin et al. 1999, Garibotti et al. 2006), including British aristocrats(Doblhammer and Oeppen 2003).

Demographic heterogeneity has been shown to have a variety of effects on population dynamics. Heterogeneity in survival and reproduction can change the population variabliltydue to demographic sto- chasticity, often reducing it relative to a homogeneous population with the same average rates. Heterogeneity in survival, if it persists throughout the life cycle, creates cohort selection, which in turn increases the asymptotic population growth rate and equilibrium population densities. Finally, heterogeneity in dispersal ability can increase the rate at which an invading population spreads.




Gary Libecap     Christopher Costello    Andrew Plantinga    Olivier Deschenes

Paulina Oliva Vallejo     Kyle Meng        1/1/15-12/31/16                               283,780







UC Office of the President, MR-15-328650


Legal Economic Data and Analysis of Environmental Markets

New initiatives in environmental and natural resource management are based on property rights that assign resource ownership directly or use rights in specified ways. This rights-based approach can be more effective than traditional regulation. Rights-based management helps California meet environmental goals in innovative ways, and joint legal/economics analysis of such approaches places the University of California at the forefront of new environmental approaches. Establishing property rights is necessary for markets that create incentives and facilitate transactions to enhance resource value and provide environmental quality. Examples are individual transferable quotas in fisheries, tradable development rights and mitigation banks in land use, habitat credits for endangered species, water rights and water quality trading, and conservation banking for ecosystem protection. Knowledge of how these rights must be structured and how the resulting markets function to achieve environmental and other goals is incomplete. Comprehensive empirical research requires information bases that have not been assembled. We propose a Planning Award for this research infrastructure through efforts by scholars in economics and law and to make it available to the UC System and California. Legal scholarship is needed for understanding which aspects of property rights enable transactions, for showing how legal institutions affect creation of property rights, and for identifying how uncertainty, monitoring problems and asymmetric information are addressed. Economics scholarship is needed to understand how property rights affect incentives, resource use and social value. This project consists of economists and law faculty in the UC System. This Planning Award project has the goal of defining research agendas and assembling data bases on property rights and market transactions to solve environmental problems. These databases would include registries of transactions for use rights associated with fisheries, water, and land. Ultimately, we will use the data assembled by the Planning Award for drafting a Program Award for collaborative efforts in empirical research aimed at understanding why property rights can be used in some situations but not in others, and why markets arise easily and function smoothly in some environmental resource settings, but not for others. California policy questions motivate the databases compiled, including over-exploitation of fisheries, inefficiencies in water use, conservation of endangered species, and ecosystem protection.



Sally MacIntyre                               9/1/09-8/31/15                                            407,061


National Science Foundation, DEB-0919603


Collaborative Research: Arctic to the Amazon: Physical Processes Controlling Gas Exchange from Freshwater Ecosystems.

Despite the small overall surface area of lakes, reservoirs, streams and rivers, estimates of carbon dioxide and methane emissions indicate aquatic ecosystems play an important role in regional carbon balances (Richey et al., 2002; Melack et al. 2004). Further, lakes are anticipated to be sentinels of climate change, with the balance between autotrophic growth and respiration in lakes anticipated to change with increased anthropogenic activity in their watersheds and with climate change. Studies have been and are being conducted worldwide to assess the role of lakes and reservoirs in regional and global carbon cycles and efforts are underway to estimate metabolic activity in lakes. Essential to both efforts are accurate estimates of gas fluxes at the air-water interface.

The gas transfer coefficient, used in the calculation of fluxes, depends upon turbulence at the air-water interface, but in most biogeochemical studies either a fixed conservative value is used or one based on wind speed alone. Other processes which cause turbulence are neglected. We estimate that regional carbon budgets are in error by at least a factor of two and likely higher in warm water lakes due to incorrect parameterization of the gas transfer coefficient. The error is unknown in cold water lakes. The surface renewal model takes into account the various processes which induce turbulence in near-surface waters yet has never been validated for lakes. We propose to combine direct air-water flux measurements of carbon dioxide using eddy covariance techniques with in situ measurements of the water-side CO2 concentration profile, turbulence and energy fluxes to evaluate and improve upon the surface renewal model of the gas transfer coefficient. We further propose studies using SF6 in lakes too small for EC studies with measurements taken on time scales of events which drive gas flux. We propose studies in an arctic, temperate zone, and tropical lake to capture the latitudinal variations in physical forcing which affect turbulence near the air-water interface. Our overarching goal is a formulation of the gas transfer coefficient which can be readily applied in ecosystem studies of lakes at any latitude.




Sally MacIntyre                               9/1/09-8/31/15                                                7,494


National Science Foundation, DEB-0919603


Collaborative Research: Arctic to the Amazon: Physcical Processes Controlling Gas Exchange from Freshwater Ecosystems

Efforts to obtain gas transfer coefficients in small lakes have been based on tracer approaches or full lake carbon budgets (Cole and Caraco 1998; Cole et al. 2010) which provide average values over several days. Estimates using eddy covariance techniques, which provide 30 minute averages, are difficult because the footprint over which measurements are made can extend over land. In our proposed work (DEB-0919603), we suggested using sulfur hexafluoride (SF6) and sampling in response to changing meteorology. However, both Vachon et al. (2010) and Cole et al. (2010) use chamber methods which they indicate can be or are corrected for the chamber induced accentuation of turbulence at the air-water interface. Using these chambers, and sampling over short intervals over diel cycles, opens the door for diel assessments of k600 using inversion techniques as in MacIntyre et al. (in press). Our approach for developing valid equations for k600 in small lakes over diel cycles will be to combine these short interval flux measurements with diel measurements of temperature, meteorology, surface currents, and pCO2.


Given the predicted importance of global warming in the Arctic for mobilizing carbon stores, and previous evidence that freshwaters contribute significantly to terrestrial carbon budgets in the Arctic (Kling et al. 1992), our measurements in summer 2011 will be performed in two small arctic lakes near the Toolik Field Station. Lake N2, has a surface area of 1.6 ha, is 10 m deep, and seasonally stratifies, and Lake E6 is polymictic, 1.9 ha in surface area, and maximally 3 m deep. We will obtain time series temperature and meteorological measurements, measurements of currents with acoustic Doppler profilers and acoustic Doppler velocimeters, measurements of exchange of SF6 introduced near bottom or in the metalimnion and the epilimnion as a proxy for green house gases, measurements of pCO2 concentrations in surface waters and air using a LiCor 820 and equilibrator, and measurements of gas concentrations in chambers. We will obtain profiles to compute turbulence using the self-contained autonomous micro- profiler (SCAMP). We have experience with all but the chamber measurements and will develop that expertise before leaving for the field. The research team includes the PI, the co-PI Jordan Clark who is an expert with SF6, and two postdoctoral fellows with experience in physical limnology and physical-biological coupling. Within the overarching goal of quantifying the physical limnology of small lakes and developing equations for the gas transfer coefficient for these lakes, intermediate goals include determining the extent of damping of turbulence during windy periods with heating; quantifying turbulence during periods of cooling; quantifying current speeds, the shear induced, and the persistence of these currents; and validating predicted shear stresses and heat loss from sheltered lakes.



Stéphane Maritorena     David Siegel          James Frew      Norm Nelson                  

                                                                 5/12/08-5/11/14                                                      2,836,882


National Aeronautics and Space Administration, NNX08AP36A


Beyond Chlorophyll: Implementation and Distribution of Innovative Ocean Color Earth Science Data Records.

Satellite ocean color imagery is all too frequently relegated to a single product, the chlorophyll concentration. Along with required determination of the spectral normalized water-leaving radiance, the chlorophyll concentration is the oldest ocean color variable derived from satellite ocean color data because of the relative ease of its derivation and validation as well as it provides a link to net primary production (NPP) rates. Thanks to advances in both the theory of ocean color and measurements of core variables over the last couple decades many innovative science products can now be derived from satellite measurements. These new algorithms include the satellite determination of inherent optical properties (e.g., Maritorena et al. 2002; Lee et al., 2002; Siegel et al. 2002; 2005a; 2005b; IOCCG, 2006; Hoge and Lyon, 2005; Hu et al. 2006; Loisel et al. 2001; 2006; Lee and Hu, 2006), discrimination of phytoplankton functional groups (Alvain et al., 2005, 2006, Brown and Yoder, 1994; Westberry et al. 2005; Westberry and Siegel, 2006), near-direct assessments of phytoplankton physiology (e.g., Behrenfeld et al. 2005; 2006; Westberry et al. 2007) and the algorithm based merging of satellite data streams (Maritorena and Siegel, 2005). It is the creation, distribution and management of these emerging and innovative Ocean Color Earth Science Data Records (OC-ESDR’s) which is the focus of this MEaSUREs project.




Stéphane Maritorena              David Siegel      11/25/14-11/24/17                                   158,793



NASA Shared Services Center, NNX15AC65G


How useful will the PACE UV bands be for IOP retrievals and atmospheric correction?

Several prospective ocean color sensors such as PACE will have spectral bands in the UV in addition to those in the visible and those designed for atmospheric correction in the NIR and SWIR regions. The expected usefulness of the UV bands for ocean color sensors is two-fold: 1) they should allow a better discrimination between phytoplankton and CDOM -through their inherent optical properties, IOPS-in the ocean and 2) they can help in the atmospheric correction when absorbing aerosols are present. They PACE UV bands are expected to help mostly in coastal and turbid waters where both high amounts of CDOM and the presence of absorbing aerosols are frequent. Because both CDOM and absorbing aerosol show increased absorption toward short wavelengths, confounding effects may limit the ability of the UV bands to discern the role of CDOM and aerosols in the remote sensing signal. Here, we propose to test the use of the PACE UV bands for both IOP retrievals and atmospheric correction. We will test the performance of a semi-analytic ocean color algorithm (an upgraded version of the GSM model) for the retrieval of IOPs using available in situ data that cover the UV and visible domains. Using simulated data, we will also test how perturbations in the NIR and SWIR atmospheric bands affect the spectral IOP retrievals (from UV to the green wavelengths). Last, we will test if the UV bands can be used to better constrain the aerosol path radiance and improve atmospheric correction. Some of these analyses will also be considered with the HICO data.



Stéphane Maritorena              David Siegel               2/8/11-2/7/15                                              487,545


National Aeronautics and Space Administration, NNX11AE87G


From UV to Fluorescence, a Semi-analytical Ocean Color Model for MODIS and Beyond.


We propose to develop the GSM model which is a well documented and vastly used multispectral semi-analytical ocean color model that we have developed at UCSB. We propose to modify the GSM model so it can account for fluorescence which should help better constraint the model and improve Chlorophyll and phytoplankton absorption retrievals in both oceanic and coastal waters. Although MODIS does not have UV bands, we also propose to extend the GSM model into the UV region to help discriminate better between phytoplankton and colored dissolved organic matter (CDOM) absorption which are not well separated by the current 412 nm band in ocean color sensors. In upgrading GSM, we also plan on making it fully hyperspectral so it can be adapted and applied to MODIS and other sensors. Model development and later tests and validations of the different components of the model will performed using existing in situ data from our field campaigns and other existing public data sets. The model will be adapted to the MODIS bands and applied to the satellite data. In parallel, we will conduct a complete error and uncertainty analysis of the model and data as we have done in the past.

In summary, our objectives are to:

- Develop and add a fluorescence module for the GSM model

- Investigate and add a UV component to the GSM model

- Make the GSM model hyperspectral and adaptable to multispectral sensors like MODIS

- Develop a complete end-to-end error budget (inputs, model, outputs)

- Apply the model and error budget to the MODIS data




Stéphane Maritorena              David Siegel               5/15/13-5/14/17                                          708,879


National Aeronautics and Space Administration, NNX13AK22A


Creating Unified Ocean Color Data Records with Uncertainties.

The generation of unified satellite data records through the merging of ocean color data from multiple sensors has proven beneficial to the science users community at various levels. First, merged products offer improved coverage of the ocean at daily to monthly time scales, which reduces the uncertainties in estimates derived from those products for both local and global studies. Second, merged data products often have lower uncertainties than the same product from any single sensor. Last, data merging has also proven a powerful tool to identify inconsistencies among the different data sources or issues with the sensors’ radiometry. In all, data merging benefits both the ocean color and biogeochemistry science that uses its data and the inter-sensors calibration/validation activities. Here, we propose to continue the development of unified and coherent ocean color time series through the merging of data from multiple sensors. We will continue the development of merged ocean color products from the GSM semi-analytical model. This model merges data at the Remote sensing reflectance level and derives several biogeochemically relevant data products simultaneously along with uncertainty estimates at each pixel. In addition, we will also generate merged products from higher level data (e.g. chlorophyll-a concentration) as such products are no longer available to the science community. We will also develop new merged ocean color products. In particular, we will develop a merged remote sensing reflectance product that will allow users to work with a data set with improved spectral resolution and lower uncertainties. Last, uncertainty estimates for all merged products will be generated on a pixel-by-pixel basis. All products and uncertainty estimates will be validated through matchup analyses. The merged records will cover the time span over which multiple ocean color sensors are or will be available (SeaWiFS, MODIS, MERIS, VIIRS, OLCI,…). Both global (9-4 km resolution from level-3 data) and regional (1-4 km resolution from level-2 data) merged products will be developed.



Robin Matoza                                5/11/15-7/31/16                                                               63,493


National Science Foundation, 1546139


Collaborative Research: Constraining Volcanic Jet Dynamics with Infrasound Using Numerical and Empirical Models

Explosive volcanic jets produce eruption columns that often form buoyant ash clouds and may fully or partially collapse to form pyroclastic density currents, dangerous fast-moving lateral flows of hot ash and gas. These natural hazards directly threaten surrounding communities and global air traffic. Our ability to mitigate these risks is restricted by our inability to safely measure volcanic jets or monitor them co-eruptively. Infrasound (acoustic signals with frequencies below that of human hearing) provides a means to detect the atmospheric oscillations from volcanoes at distances of meters to thousands of kilometers from the source. This project aims to use these signals to constrain the physics of volcanic jets and measure them in real-time. These measurements may be used as input parameters for aviation safety ash-cloud prediction models and toward assessing the hazard presented to local communities by a given eruption. Additionally, this work will provide constraints on eruptive parameters and physics for numerical and experimental studies.


Recent infrasound recordings of volcanic jets have frequency spectra similar to the acoustic signal produced by man-made jets (jet noise). For the past 60 years, aeroacoustics has studied the relationship between the flow properties of man-made jets and the acoustic signal produced. Our long-term objective is to reverse this concept by determining the flow properties of volcanic jets based on the infrasound signal produced by the eruption. This work represents a first step toward this long-term goal. We begin by building a catalog of infrasonic jet noise observations to determine characteristic volcanic jet noise features and determine any correlations between these features and known eruptive parameters. This process includes searching existing infrasound databases using new signal processing tools and empirical and theoretical propagation modeling. We will then use analytical and numerical models of volcanic jets to adapt established empirical models of man-made jet noise to volcanic systems.



John Melack     Laura Hess        Sally MacIntyre                  1/1/10-12/31/14 357,736


National Aeronautics and Space Administration, NNX10AB66G


Analysis and Synthesis of Carbon Dynamics on Amazon Floodplains.

Our research on the ecology, hydrology and biogeochemistry of Amazon wetlands under the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-ECO) addressed important aspects of the regional carbon dynamics of the Amazon basin, combining remote sensing and field measurements to calculate evasion of methane and carbon dioxide from rivers and wetlands. Our proposed work synthesizes newly available remote sensing datasets and analyses, recently completed field measurements, and recent modeling advances with past results in order to target important remaining uncertainties regarding carbon dioxide and methane dynamics on Amazonian floodplains.  This work will contribute to understanding of tropical riverine and wetland systems in the global context of greenhouse gas emissions and carbon dynamics. Furthermore, recent studies have indicated that lakes and wetlands make a significant contribution to the global carbon budget because of the high rates of carbon uptake and metabolism in these systems. Therefore, our research in the large and productive Amazon basin is likely to be quantitatively important globally.


About 20% of the Amazon basin is seasonally inundated, and these wetlands are sites of intense biological activity that can have a strong influence on the regional carbon dynamics.  Understanding the effects of these dynamics on air-water exchanges of CO2 and CH4 is of critical importance if we are to estimate the net contribution of Amazon wetlands to greenhouse gas emissions. To quantify this influence it is necessary to improve estimates of the fluxes and balance of carbon, incorporating the principal sources of spatial and temporal variability and developing numerical models to simulate and integrate their effects.  Hence, we propose to study the organic carbon dynamics and its influence on the net emissions of CO2 and CH4 on central Amazon floodplains.

         We propose to examine three unresolved issues:

1.   The role of aquatic herbaceous macrophytes and litterfall from flooded forests as sources of organic carbon fueling the outgassing of carbon dioxide and methane from wetlands and rivers.

2.   The regional, seasonal and interannual variations in evasion of methane and carbon dioxide.

3.   The inundation dynamics of floodplains on multiple scales, and their function as a physical template for biogeochemical processes.

To resolve these issues and to advance predictive capability and understanding of how the carbon balance of Amazon floodplains will respond to environmental changes requires several coordinated activities. Hydrological and hydrodynamic models will be integrated with biogeochemical analyses and models and with remotely sensed-based estimates of plant growth and phenology.




John Melack                                    9/1/12-8/31/17                                                              174,556


National Science Foundation, DEB-1242594


LTREB Renewal-Collaborative Research: Responses of High Elevation, Acquatic Ecosystems to Interannual Climate Variability

Three decades of investigation of high-elevation Emerald Lake and neighboring lakes and watersheds in the Sierra Nevada (California) have transformed our understanding of how interannual changes in snowmelt and rates of atmospheric deposition have modified the timing and magnitude of hydrological and chemical fluxes, and thereby modulate the ecology of high elevation ecosystems. Experiments, both in the field and laboratory, have added mechanistic understanding of biogeochemical processes of Sierran lakes and watersheds. Comparative studies of biological and hydrochemical aspects of lakes, conducted from 1982 to the present, provide a regional context for examination of Sierra-wide conditions and responses to global change. Recent paleo-investigations at Emerald Lake and companion lakes have provided a multi-century context for the 31-year dataset from Emerald Lake. In our LTREB renewal, we propose to complete our decadal research plan to test the hypothesis that altered climate, changing snow regime and changes in atmospheric composition are driving biogeochemical and ecological changes in high elevation ecosystems. We propose to continue long-term study of the Emerald Lake watershed, Tokopah Valley and nearby catchments in order to test conceptual hypotheses regarding drivers of environmental change in high-elevation aquatic ecosystems. The primary foci of the proposed study are: i) continued assessment of the response of lake phytoplankton to changing atmospheric deposition and ii) continued study of the coupling between climate variability and N and P biogeochemistry. These questions will be answered through the continuation of on-going watershed measurements; additional study of lake metabolism; enhanced measurements of atmospheric deposition; and paleolimnological study of lake sediments. Climate conditions have a strong influence on potential N&P source areas, on the incidence of fires, on transport and deposition, and lake ecology. Hence, as a consequence of the considerable interannual variability in California’s Mediterranean climate, it is essential to conduct these studies for at least ten years.



John Melack                                    9/1/13-8/31/15                                            278,130


Pennsylvania State University, 4916-USB-DOE-0620


Scale-aware, Improved Hydrological and Biogeochemical Simulations of the Amazon Under a Changing Climate

About 20% of the Amazon basin is seasonally inundated, and these wetlands are sites of intense biological activity that can have a strong influence on the regional carbon dynamics. Understanding the effects of these dynamics on air water exchanges of CO2 and CH4 is of critical importance if we are to estimate the net contribution of Amazon wetlands to greenhouse gas emissions. To quantify this influence it will be necessary to improve estimates of the fluxes and balance of carbon, incorporating the principal sources of spatial and temporal variability and developing numerical models to simulate and integrate their effects. To do so, we propose to combine hydrological and biogeochemical modeling with analysis of existing data.


The overarching question of our proposed research is: How do the overall CO2 and CH4 cycles and carbon pools in the Amazon, including catchment and aquatic systems, respond to the changing climate, especially significant changes in the water cycle? To address this question, the UCSB aspect of the proposed research will enhance the modeling capabilities of Community Land Model by adding an aquatic ecosystem module that includes multi-scale carbon and methane biogeochemistry.



Joel Michaelsen      Lisa Stratton      5/27/14-6/30/16                                     869,300


California Coastal Conservancy, 13-115


North Campus Open Space Restoration (previously named Upper Deveroux Slough) Project Planning Phase, UCSB

This work is associated with initial planning phase for the restoration of upper Devereux Slough in the area formerly used as Ocean Meadows Golf Course (63.8 acres) and adjacent open space area known as South Parcel (68 acres). The project involves interim management, planning including preliminary design, technical studies, environmental compliance documents, permitting and commencement of seed collection and propagation. Together the project area is part of the newly named North Campus Open Space (NCOS). The UC Regents, through UCSB and its partner The Trust for Public Land (TPL) will direct the planning phase for the Project. 


The planning work will support the restoration goals of the project:

1) restore estuarine function to the upper arms of Devereux Slough by creating a diversity of wetland habitats (sub-tidal, mudflats, salt marsh, transitional freshwater marsh); 2) re-create a diverse set of upland habitats and vernal wetlands by returning a significant portion of the fill soil from the excavation of the slough arms to South Parcel; and 3) design a public access component of trails and, potentially, boardwalks which will connect to local and regional trail networks in adjacent open spaces.  Benefits of the project include reduced localized flooding and enhanced habitat quality for threatened and endangered species currently or potentially using the area. These species include tidewater goby, western snowy plover, California least tern, California red-legged frog, Ventura marsh milk vetch and multiple species of special concern such as White-tailed Kite.


Joel Michaelsen     Lisa Stratton  5/1/15-5/1/17                                           1,000,000



California Natural Resources Agency, U59316-0


North Campus Open Space Restoration

The North Campus Open Space Restoration Project will restore nearly 50 acres of coastal wetland and approximately 50 acres of upland habitat that will provide an important community green space to this densely populated area.  The trails and boardwalks to be created will invite people to intimately experience a unique, seasonally variable wetland ecosystem and provide connectivity between residential areas, schools, commercial areas, and adjacent coastal open space. This project will restore the hydrologic function lost in 1965 when nearly 500,000 cubic yards of soil were moved from adjacent uplands into a once functioning estuarine system.  Opportunities to work on this scale in developed southern California cities are very limited, and this project provides an unprecedented local opportunity in a region that has lost more than 80% of its coastal wetlands and has experienced a significant loss of public access to open space areas.  By restoring a natural system, this project will improve water quality, increase flood capacity, support wildlife and enhance regional adaptation to projected sea level rise by providing room for the migration of habitats. 




Norm Nelson                                                    8/9/13-8/8/14                                                7,662


East Carolina University, A13-0184


A workshop on the laboratory measurement of the spectral absorption of color dissolved organic matter


We will carry out preliminary experiments in our laboratory using UltraPath and Shimadzu spectrophotometers. Dr. Nelson will travel to GSFC for the workshop, and will plan on conducting post-workshop activities back in the lab. Dr. Nelson will participate in data analysis and project report preparation, and will participate in any manuscript preparation led by the workshop participants for publication in peer-reviewed journals.




Norm Nelson       David Siegel            3/26/14-3/25/16                                    274,579


NASA Shared Services Center, NNX14AG24G


Ocean Color Observations on CLIVAR: Opportunities in 2014 and 2015

Since 2003 we have been participating in U.S. CO2/CLIVAR Repeat Hydrography expeditions, studying the distribution and dynamics of CDOM in the global ocean, and collecting a global database of particulate and CDOM absorption, radiometric profile measurements, phytoplankton pigments via HPLC, and related data for ocean color validation and algorithm development. Recently we have added an automated system that measures surface particulate backscattering, spectral particle absorption and attenuation, and particle size distribution to our suite of measurements, allowing us to study the impact of plankton community structure on the remotely-­‐sensible optical properties. Uncertainty in ship availability and scheduling for CLIVAR expeditions has in recent years made planning ahead for cruises through the conventional grant process challenging. We have an opportunity to participate in two expeditions in the Pacific in 2014 and 2015, and are submitting a Rapid Response proposal accordingly. We propose to analyze CDOM samples collected by the GSFC field team on the P16S expedition to the South Pacific and Southern Ocean in early 2014, and to mount a full effort with our own field team on the early 2015 P16N expedition to the equatorial and North Pacific along the 152W line. Our continuing research will contribute to understanding the effect of phytoplankton community structure on inherent optical properties, and to the development of new ocean color algorithms thereof.





Norm Nelson     David Siegel               2/8/11-2/7/15                                        732,936


National Aeronautics and Space Administration, NNX11AE99G


Bermuda Bio-Optics Project: Enhancement of Measurements for New Ocean Color Applications.

This project will revitalize ongoing time-series of high quality optical measurements in the field at the Bermuda time-series site. New applications for ocean color (algorithms, etc) will require novel and enhanced existing measurements of radiometric and inherent optical properties. This project will apply and test against field data, prospective algorithms addressing aspects of community structure and carbon flux, taking advantage of our time-series data records and ongoing related research at the site. We intend to introduce and test evolutionary improvements to techniques for measuring radiometric optical properties at the site. In particular the beginning part of the project will include development of an autonomous free-floating profiling optical buoy system (the Near-Surface Profiling Buoy, NSPB). The NSPB is a flexible, easily deployed, and is a cost-effective alternative to long-term, moored optical buoy installations. The NSPB eliminates the need to address biofouling and extrapolation to the sea surface from discrete fixed depths, which complicate data analysis from long-term moored optical buoy data. This approach also avoids modeling of upwelling radiance from the reflected sky radiance, which bedevils above-water approaches. We believe a global network of short-term, autonomous profile systems, patterned after the system proposed here, would change how ocean color satellite vicarious calibration is performed. The NSPB system will also make direct and diffuse incident irradiance determinations which will be useful for assessing aerosol and cloud optical properties and incident spectral irradiance at the sea surface. BBOP will provide a proving ground for this instrumentation which will replace currently-conducted handheld optics profiles.





Norm Nelson      David Siegel       7/1/14-7/1/17                                              538,119


National Aeronautics and Space Administration, NNX14AM83G


Bermuda Bio-Optics Project: Continuation of Time-series and Retrospective Data Analysis

The subtropical Sargasso Sea southeast of Bermuda has been and continues to be a model system for oceanographers studying earth system processes in the open ocean, in particular elemental cycles involving organic carbon and nutrients. The long-term studies being carried out at the U.S. JGOFS Bermuda Atlantic Time-series Study (BATS) site (Steinberg et al. 2001) are providing a decade-scale view of the current state of the ocean climate and its changes, while the hydrographic measurements at Hydrostation S provide a record of ocean climate change over the last half century. The long baseline of these time series reveals patterns and processes that are not visible within shorter studies. In particular, the BATS record of the inorganic carbon system (Bates et al, 2012; Figure 1) shows a strong trend in increasing CO2 and decreasing pH and aragonite saturation state.  This trend may be a strong driver of the biological community that we can detect and analyze using bio-optical techniques. Our research within this time series context has focused on developing and applying methods for extending the reach of in situ time-series of oceanographic studies by using optical and remote sensing data to provide novel information and spatial context. Our past and ongoing research efforts (detailed below in Results of Prior Research) have been oriented toward analyzing the linkages between ocean optical properties (as measured in situ and from spaceborne sensors) and biogeochemical processes such as CDOM cycling and primary productivity as modulated by seasonal cycles and mesoscale processes.


Previous and ongoing studies have also made use of BBOP in situ data in combination with imagery and other sensor data from EOS and related platforms in both algorithm development, validation, and in answering science questions.

BBOP has also contributed significantly to data records required for deriving new products from ocean color data, and toward the validation of current spaceborne radiometric sensors and algorithms. Our goals for this project are to continue the time series of high quality observations at the BATS site, carry out studies of the long-term data set, transition to the new platform, and reprocess and quality control the historic data set using new community derived standards.




Roger Nisbet                                          10/1/10-9/30/15                                    278,486


University of California, 20110022 & UCSCMCA-11-008


Investigations in Fisheries Ecology.

Dynamic Energy Budget (DEB) theory uses systems of differential equations to describe the rates at which individual organisms assimilate and utilize energy and elemental matter from food for maintenance, growth, reproduction and development. These rates depend on the state of the organism (age, size, sex, nutritional status, etc.) and on the state of its environment (food density, temperature,etc.). The objective of the research is to develop a DEB model for Chinook salmon that links the available knowledge on all stages from eggs to mature adult, and opens the way to future modeling of the complex salmon dynamics in space and time. Characterization of the physical and biotic environments that determine the forcing functions for the model will come from models provided by other investigators. The primary product will be a prototype

“full life cycle” DEB with parameters estimated from literature data. By the end of the project, the model will be available for coupling different forcing functions; this will involve resolving theoretical issues relating to matching of spatial scales. Components of the work will include:

• Initial selection of state variables for each life stage

• Literature search for empirical guidance on the “maturity” variable characterizing the transitions between stages

• Formulation of submodel for feeding

• Model parameterization from literature – first cut

• Preliminary model testing and refinement as needed

• Evaluation of implications of environmental forcing at different spatial scales

• Preparation of peer‐reviewed papers

• Attendance at project meetings




Roger Nisbet                                          8/8/12-8/7/15                                                          176,584


University of California, UCSCMCA 13-008


From the Watershed to the Ocean: Using NASA Data and Models to Understand and Predict Variations in Central California Salmon.

This project will focus on the development and testing of dynamic energy budget models for Chinook salmon.  Characterization of the physical and biotic environments that determine the forcing functions for the model will come from the three physical models and the biogeochemical model described in the proposal and provided by other investigators.  Since DEB model development and testing has to be performed in parallel with development of these other models, the first year of research will be committed to developing a prototype “full life cycle” DEB and estimating the parameters from literature data.  The primary task in year 2 will be coupling the DEB model to the different forcing functions and resolving issues relating to matching of spatial scales.  This is likely to involve experimentation with different stochastic variants on the basic model. The priority for year 3 will be integration of the components from individual investigators to meet the broader aims of the research. 



J. Carter Ohlmann                                3/15/11-2/28/15                                                      252,733


Oregon State University, S1364A-A


DYNAmics of the Madden-Julian Oscillation / DYNAMO Subsurface Fluxes.

Solar radiation plays a primary role in the diurnal (mixed layer) stratification process influencing both daytime EKE dissipation and setting up nighttime convection (e.g. Simpson and Dickey 1981, Price et al. 1986, Brainerd and Gregg 1993, Hosegood et al. 2008). Direct measurement of the in-water solar flux divergence, or radiant heating rates, allows variations in solar forcing of stratification, that can be significant, to be accurately quantified (e.g. Ohlmann et al. 1996, Ohlmann et al. 1998, Ohlmann et al. 2000, Hosegood et al. 2008). Solar attenuation depends primarily on upper ocean chlorophyll biomass concentration in open ocean waters. Chlorophyll biomass depends (to first order) on the availability of light and nutrients. When measured together, these data inform on bio-physical feedbacks. This statement of work describes the proposed measurement of surface irradiance and in water solar flux profiles during the Dynamo field experiment. Collecting solar flux profiles allows upper ocean stratification, an important component of upper ocean mixed layer evolution, to be quantified. It is also proposed that water samples be collected for laboratory analysis of chlorophyll biomass and nutrients. These data are necessary to understand why the in-water solar flux divergence varies, and the sampling adds little cost to the project. Upper ocean models work with solar transmission, defined as solar flux at depth relative to the incident value just above the surface. Surface irradiance will thus be sampled with a radiometer mounted on the ship’s mast. The complete data set, to be collected throughout the MJO-evolution cruises, will provide the necessary solar transmission information for accurate quantification of upper-ocean mixing, and will allow the bio-physical influence on stratification/dissipation to be better understood. Profiles of downwelling irradiance and upwelling radiance in 11 spectral bands (~300 to ~700 nm) will be measured using a Satlantic Profiler II Radiometer ( The radiometer is a long (122 cm) slender (9 cm in diameter) hand-deployed freefalling instrument (retrieved using a small winch) that eludes ship motion and shadow. Coincident measurements of downwelling spectral irradiance and total solar radiation incident at the surface will be made so that solar transmission profiles can be computed. It is estimated that solar flux profiles will be made to ~40 meters every few hours each day. It is possible that profiles in the morning and evening hours, when total solar energy is reduced, can be made shallower. Water samples at discrete depths will be collected once each day with the ship’s CTD/Rosette system and analyzed for chlorophyll concentration and nutrients. The noontime CTD/Rosette casts will be performed to ~150 meters so that the deep chlorophyll maximum and nutricline are resolved. The radiometer primarily resolves the visible portion of the entire solar spectrum. This is sufficient to resolve the solar flux at depths beneath ~5 m as energy in the ultra-violet and near-infrared spectral regions is completely attenuated in the top few meters of the ocean.




Susannah Porter                                    5/1/13-4/30/15                                                        40,000


National Science Foundation, EAR-1251959


Collaborative Research: Estimating the Tempo of the Cambrian Explosion

Due to recent advances in geochronology, stratigraphy, and paleontology, the broad pattern of the Cambrian explosion is now known, but details of this event remain unclear, including the rate of diversification, the order of appearances of major clades, and the number and timing of pulses of origination. The goal of the work proposed here is to generate a statistically rigorous timeline for the appearances of skeletal animals during the first ~25 million years of the Cambrian (Nemakit-Daldynian and Tommotian stages). It will build on earlier work by PIs Maloof and Porter and their collaborators that used radiometrically calibrated carbon isotope chemostratigraphy to reconstruct the pattern of appearances through this interval at two million year resolution. That work suggested that the diversification of skeletal animals began early and extended throughout this interval, with pulses of appearances ca. 540–538 Ma, 534–530 Ma, and 524–522 Ma. However, it is not clear to what extent preservational biases and uncertainties in correlation and dating have influenced these patterns.


This research effort will use recently developed statistical methods to address these concerns. In particular, it will (1) use a new method developed by PI Wang and colleagues to estimate a confidence interval for the duration of the diversification (and thus provide an estimate of its rate), and (2) use both a randomization procedure and a new method developed by Wang and an undergraduate student to identify the most likely number of pulses of origination and their timing. As a side benefit, this work will also provide estimates of the time of origination for the skeletal genera in the database, as well as estimates of recovery potential and diversity curves. Finally, this work will fund ongoing efforts by PIs Maloof and Porter and graduate student Moore to augment the dataset, currently composed of 150 skeletal genera from 24 sections in China, Mongolia, and Siberia, with the eventual goal of extending coverage to later Cambrian time.



Susannah Porter                             9/1/14-8/31/17                                            280,343


National Science Foundation, EAR-1411594


Collaborative Research: Toward a global timeline of biological and ocean geochemical change during the early Cambrian

Global correlation of the lower Cambrian has been difficult to achieve. Biostratigraphic correlation has been hampered by the provinciality of many early animal groups, including trilobites, and the inevitable diachroneity of fossil first appearance datums (FADs). Likewise, deriving correlations based only on qualitative ‘wiggle matching’ of chemostratigrapic records such as carbon (δ13C) or strontium (87Sr/86Sr) isotopes usually is ambiguous, and can be distorted by disconformities and carbonate diagenesis. Furthermore, without U-Pb zircon ages from interbedded tuffs and volcaniclastic rocks, even stratigraphy that is well correlated in relative time will not constrain the rate and duration of important biological and geochemical changes. The PIs will construct a comprehensive database of animal fossil occurrences, litho- and chemostratigraphy, and U-Pb zircon geochronology of interbedded volcaniclastics. Multiproxy records of variable diversity and completeness from around the globe will be correlated using the CONOP seriation software. The resulting composite stratigraphy will place each local record in relative and absolute time, based not on one variable, like FADs or δ13C, but rather on all available stratigraphic observations simultaneously. In addition, we will improve on the CONOP algorithms by adapting statistical techniques that compute uncertainties in stratigraphic correlation by taking into account variables such as curve-matching ambiguity and facies control on fossil preservation. The result will be a first-of-its-kind timeline of early Cambrian animal evolution and ocean geochemical change with quantitative uncertainties. We will use this timeline to constrain a new Earth-system model that tracks C, O, S, Mg, Ca, ALK, P, Sr, U and Mo in sea water and sediment pore-fluid.



Margarita Portnykh       Gary Libecap            8/1/14-7/31/15                                           96,951


Donors Trust, 73346928


Essays on Adaptation to Climate Change

The main focus of this research is the analysis of the economic effects of climate change. Climate change is perceived to be quite costly, there is a growing literature, which presents estimates of the costs of rising temperatures in different countries. However, at the moment adaptation mechanisms, especially provided by means of free-markets are studied much less. While there are some studies indicating that adaptation is likely to help, the exact scope and the magnitudes of the effect of various adaptation mechanisms on climate change costs are not well understood. This research will help fill in this gap in the literature. Prior research on migration as an adaptation mechanism allowed for the assessment of the efficacy of migratory responses as a means of adapting to rises in temperature. In this effort, I found that migration, while having a somewhat small effect on average, will be very helpful in reducing the costs for the areas which are extremely hit hard by the climate change (notably Florida and some currently densely populated areas on the East Coast). That paper provided a methodological contribution by constructing a discrete choice model, which explicitly accounts for general equilibrium effects. This model takes into account that while population density might affect individual migratory decisions it is also a function of those same individual decisions on the aggregate level. Currently, my research accounts for general equilibrium effects for population density only. One might expect that wages might change as a result of both migration (due to change in labor demand) and climate change (supply side shocks). These will be the next steps in my research.




Matthew Rioux                                      2/1/13-1/31/16                                                        218,043


National Science Foundation, EAR - 1250522


Timescales of development of sub-ophiolite subduction: High precision U-Pb dating and geochemical characterization of late magmatism and metamorphism in the Oman-U.A.E. ophiolite

The Oman-United Arab Emirates (U.A.E.) ophiolite is the largest sub-aerial exposure of oceanic lithosphere on Earth and has played an important role in our understanding of both the structure of the crust and the processes of crustal growth at mid-ocean ridges (MOR). The structure of the ophiolite makes it clear that the crust formed in an extensional environment similar to modern fast-spreading mid-ocean ridges, making it an invaluable resource for studying MOR processes. However, many researchers have also highlighted important differences between the Oman-U.A.E. ophiolite and modern ridges, including geochemical differences between MOR basalts and extrusive lavas in the ophiolite and the presence of multiple generations of plutonism and volcanism within the mantle and crust. To determine how observations from the ophiolite can be applied to modern spreading centers, it is necessary to understand the tectonic setting during formation and emplacement of the ophiolite.


The Principal Investigator recently completed an extensive U-Pb zircon geochronology and Nd isotope study of the ophiolite. The results from this study, together with previous work by other researchers, suggest that the age and composition of magmatism that post-dates formation of the ophiolite crust can provide important new insight into the tectonic history of the ophiolite. The proposed research would target three series of rocks: silicic sills and dikes in the mantle with Nd isotopic ratios that are distinct from the ophiolite crust; intrusive and extrusive rocks in the crust that post date the main phase of crustal growth; and leucocratic melts and amphibolite to granulite facies metamorphic rocks from the metamorphic sole. The distinct isotopic and geochemical compositions of the first two series are likely related to development of a thrust fault or subduction zone below the ophiolite. Initial U-Pb zircons dates from these rocks are <0.1–0.25 Ma younger than the ophiolite crust. Further high precision geochronology and geochemical analyses, including Nd and Hf isotopic analyses, will map out the spatial and temporal development of subduction or thrusting along the length of the ophiolite. High-precision U-Pb zircon geochronology and geochemistry of the metamorphic sole will provide complementary information on conditions in the under thrust slab. This project will provide fundamental new insight into the tectonic development of the Oman-U.A.E. ophiolite and place direct temporal constraints on models of ophiolite genesis. 



Matthew Rioux                                      2/15/12-7/31/14                                                      35,046


National Science Foundation, OCE-1144648


Collaborative Research: Plutons as ingredients for continental crust: Pilot study of the differences between intermediate plutons and lavas in the intra-Aleutian arc

We propose a pilot study of Paleogene and Neogene plutonic rocks, together with a limited number of the volcanic and volcanoclastic rocks intruded by these plutons. Our work will focus on collection of full whole rock major element, trace element and radiogenic isotope data and geochronologic data on plutonic rocks and a few older volcanic samples, for comparison with the much larger existing data set for Holocene volcanic rocks. Our main goals are constraining (a) the systematic chemical differences between plutons and volcanic rocks, (b) the origin of these differences via melting of different sources and/or different crustal differentiation processes, (c) the presence or absence of an age progression in the composition of Aleutian magmatic rocks.

We will analyze existing samples from three islands, Atka, Umnak, and Unalaska. We will use published XRF and/or K/Ar data as a guide to sample selection, but in most cases we may need to choose spatially related samples, rather than those previously analyzed, in order to ensure that we have enough material for our proposed work. Samples will undergo zircon U/Pb and 40Ar/39Ar geochronology, XRF and ICP-MS whole geochemistry, and Sr, Nd, Pb and Hf isotope analyses.



Leonel Romero                             6/17/15-10/31/15                                                             26,856


University Corp for Atmospheric Research, Z15-13065


Numerical Modeling of Non-Equilibrium Wind-Waves in the Southern Ocean

This subcontract to the National Center for Atmospheric is for the modeling of surface waves in the Southern Ocean for idealized and realistic wind scenarios. The work is in collaboration with Peter Sullivan at NCAR and William Large at NCAR’s Climate and Global Dynamics Division for a DOE SciDAC award: Southern Ocean Uptake in Model for Prediction Across Scales (MPAS). The goal is to investigate effects of surface waves on upper-ocean dynamics, mixing and deepening of the mixed layer due to wave-induced Langmuir circulation. Broadband directional wind-wave spectra will be simulated under different wind forcing conditions, including growing and decaying winds of different rates. Simulated wave spectra will enable full computations of Stokes drift. Time evolving Stokes drift will allow P. Sullivan to force Large Eddy Simulations of upper ocean turbulence with wave effects beyond wind-wave equilibrium. Wave simulations will be carried out using in-house modifications of the wave model WaveWatch III. Wave solutions will be made available on NCAR’s supercomputer Yellowstone and, if needed, on Department of Energy (DOE) machines located at National Energy Research Scientific Computing Center.




Dylan Rood                                       9/15/11-8/31/15                                                            89,382


National Science Foundation, 1103532


Collaborative Research: Synchronizing ther North American Varve Chronology and the Greenland Ice Core Record Using Meteoric 10-BE-Flux.

This project will investigate the systematics of 10Be concentrations in glacial and nonglacial varved sediments from the NAVC, with the goal of determining how best to extract a record of 10Be fallout variations. Second, we will use the information gained in this first part of the project to plan and carry out a sampling and measurement scheme most likely to yield a record of centennial variability in 10Be fallout flux that can be matched to the 10Be flux record from the Greenland ice cores.


Measurement of bulk 10Be in NAVC sediments: The specific analytical tasks in this project include locating and obtaining samples of NAVC sediments, subsampling them for 10Be analysis, and measuring 10Be concentrations by accelerator mass spectrometry (AMS). Our primary source of samples will be an extensive archive of cores of NAVC sediments that PI Ridge has collected over many years and that are stored at Tufts University. One important aspect of this part of the project, however, is to ensure that subsamples are not cross-contaminated, or contaminated with modern 10Be, during collection. This requirement may restrict use of archived cores that are highly fractured or otherwise difficult to sample cleanly. If we can not obtain the samples we need from this archive, we will revisit source outcrops and collect new samples, typically by collecting short cores from outcrops using a hammered-PVC-pipe procedure that Ridge has employed for many years. Ridge will have primary responsibility for locating archived and new sample material and correlating it to the NAVC, although students will also be closely involved in this process and all project personnel will participate.


10Be concentrations are measured by an isotope dilution method in which a 9Be carrier is added to the sample, the entire sample is digested and the Be extracted, and the Be isotope ratio is measured by accelerator mass spectrometry (AMS). All aspects of this process are proven, reliable, and efficient. We will carry out Be extraction from sediments in a purpose-built chemistry laboratory at the University of Vermont (see Facilities and Resources), using a total-fusion method described by Stone (1996) and further refined during the past few years by Balco, Bierman, and Bierman’s students. At the 10Be concentrations we expect to measure in this project (> 107 atoms g␣1), AMS measurement is rapid (a few minutes per sample) and precise (␣1-2% analytical uncertainty).


Research focus 1: systematics of 10Be deposition in varved sediments. We will use several strategies in the first part of the project. First, we will investigate how 10Be is delivered to glacial and nonglacial varved sediments. We hypothesize that 10Be deposition is seasonally focused due to effects such as more effective scavenging by fine sediment during winter, suppression of fallout 10Be delivery to the lake during winter due to snow and ice cover, and the strong overall seasonality of sediment transport and deposition. We will investigate this by characterizing 10Be concentrations and their variability within both summer and winter layers to investigate seasonal effects, as well as laterally within a single varve to investigate the effect of sediment source variation between direct glacial sediment and runoff from the landscape. Understanding which, if any, of these processes are important may suggest means to preferentially sample fallout 10Be rather than recycled 10Be. Second, we will determine whether or not short-period solar variability, in particular the diagnostic 11-year Schwabe cycle, is present. As noted in many ice-core studies (Beer et al., 1994; Yiou et al., 1997; Steig et al., 1998), observing the 11-year cycle in a 10Be concentration record clearly shows that 10Be fallout variations are recorded (the reverse is not necessarily true: if we did not observe the 11-year cycle, it could signal only that it was suppressed by a multi-year residence time for fallout 10Be in the lake and catchment, which would not affect recording of centennial-scale variability). Analytical work for this part of the project will require approximately 90 10Be measurements, including paired summer and winter analyses on a number of glacial and nonglacial sections (approx. 40 analyses) and analyses of at least two short continuous sections at a resolution adequate to observe the 11-year period (e.g., two-year spacing over a 50-year period; 50 samples).


Research focus 2: generating a long 10Be flux record suitable for correlation. In the second part of the project we will choose a section of the NAVC from which to generate a long 10Be record with resolution appropriate to matching the centennial-scale variations in 10Be flux observed in the Greenland ice cores, and then generate this record. At present, absent any new information we may gain from the first part of the project described above, we think the nonglacial varve section at Newbury is the most likely section of the NAVC to yield such a record, for three reasons. First, varves are relatively thin, which limits dilution of the fallout signal. Second, centennial-scale variations in 10Be flux during this time interval are suitable for correlation at the needed precision, as demonstrated by Muscheler et al. (2008). Third, this section is one of the longest continuous sections in the NAVC, which permits us to generate as long a record as possible from a single site: this avoids any potential complications related to patching together 10Be records from multiple locations within the lake system.



Dylan Rood                                             9/15/11-8/31/16                                                      150,017


National Science Foundation, 1114436


Collaborative Research: Deciphering Connections Among Land Management, Soil Erosion, and Sediment Yield in Large River Basins.

This research is a systematic, multidisciplinary study of the relationship between land-use and fluvial sediment transport in a mountainous region of western China. In this region, a unique hydrological dataset provides a framework to relate sediment transport changes to land-use, in the context of rapid urbanization and climate change. We will use hydrological observations and isotopic measurements to estimate sediment transport over a variety of temporal and spatial scales, determine the sources and sinks of the sediment, and tie our findings to regional land-use history. We anticipate these efforts will demonstrate that understanding the source and fate of sediment is important as it will allow us to unravel the effect of land-use on sediment transport in sensitive mountain regions undergoing population expansion, provide critical information for development and environmental conservation projects, and better allow us to use sediment flux measurements on a variety of time scales to estimate geological-time-scale rates of mass export from the landscape.



Dylan Rood                                                                6/1/14-5/31/15                                     27,406


US Geological Survey, G14AP00055TDD


Differential Uplift and Incision of the Yakima River Terraces: Collaborative Research with WWU, UVM & State Agricultural College, and UCSB


This collaborative effort will define and relate rates of fluvial incision along the Yakima River to surface deformation and earthquake activity along reverse faults and folds in the Columbia Basin of Washington State. This project combines lidar and field-based investigation of fluvial terraces along the Yakima River with cosmogenic radionuclide geochronology of terrace cover deposits to define spatial and temporal patterns of river downcutting over potentially active structures in the Yakima Fold and Thrust belt (YFTB).


The primary question we seek to address is whether incision of the Yakima River reflects differential uplift in response to late-Quaternary growth and development of the Yakima folds. Increasing recognition that reverse faults and folds of the YFTB represent potential earthquake sources underscores the need to resolve the contribution of geologically young deformation to the topographic development of these structures. The Yakima River terraces between Kittitas Valley and Roza Gap represent ideal landforms for reconstructing this history. Intact surfaces and exposed gravel cover deposits suggest a rich archive of sustained fluvial downcutting over three fault-cored anticlinal ridges, Manastash Ridge, Umtanum Ridge, and Selah Butte, from north to south. Preliminary mapping, field reconnaissance, and downstream correlation of terrace remnants reveals multiple generations of surfaces spanning these structures, as well as sufficiently thick cover deposits for 10Be/26Al burial dating of capping gravels based on the isochron method.


Specific questions that data collected by this project can address include: 1) whether downcutting of the Yakima River reflects late-Quaternary growth of YTFB anticlines (as expressed by uplifted terraces) occurred in response to recent slip and related uplift on the underlying reverse faults, 2) how spatial and temporal patterns of fluvial incision reveal the locus of surface deformation along the Yakima River, and 3) the relationship among incision and folding of the Yakima River terraces to slip on the underlying reverse faults. Investigation of these topics will shed light on the rate, timing, and magnitude of surface deformation along the Yakima River canyon, and improve our understanding of how contemporary shortening is partitioned among individual structures within the YFTB.


Reducing losses from earthquakes. This project will contribute to reducing losses from earthquakes in the Pacific Northwest by characterizing surface deformation and fault activity for structures with an unknown late-Quaternary history of deformation. The YFTB represents a priority target area for understanding earthquake hazards in Washington State due to proximity to critical facilities at the nearby Hanford Nuclear site.




Joshua Schimel     Patricia Holden           5/1/12-4/30/16                                607,635


National Science Foundation, DEB-1145875


Collaborative Research: Controls over C Sequestration: Physiology vs. Physics

In this project, we will focus on an annual grassland to evaluate the mechanisms that regulate the fate of C. Grasslands in California cover over 10 million hectares (Jackson, 1985), are dominated by annual grasses, and are important ecosystems in the State. However, we have found comparable microbial dynamics in California grassland and Bishop pine forest, so we have confidence that the mechanisms we evaluate occur in other ecosystem types as well.


The research will take place at the UCSB Sedgwick Reserve, which is located 50 km from the coast in the Santa Ynez Valley (43o42 ́30 ́ ́N, 120o2 ́30 ́ ́W). The climate is Mediterranean and characteristic of interior California, with hot dry summers and cool wet winters. Average rainfall is 380 mm/yr, but varies widely; El Niño years are notably rainy. The soils are pachic argixerolls in valley bottoms and typic argixerolls on slopes. The vegetation is dominated by Mediterranean annual grasses including Bromus diandrus, B. hordaceous, and Avena fatua. Our main site will be in the Figueroa watershed previously studied by Schimel and Holden.


Analyzing the mechanisms involved requires controlled microcosm experiments that will be described below, but to explore how these mechanisms regulate how varying plant C inputs and moisture influence soil C storage, we propose a field experiment in which we modify: 1) plant C- inputs during the growing season (by thinning), and 2) the length of the dry season (by watering & rainout shelters). We will establish 3 blocks of 16 plots each (1 m x 1m) and establish a factorial design in which we create gradients of plant inputs and the length of the summer drought. We will use modeling to integrate between the micro- and macro-scales.

To modify plant inputs we will thin plots by hand to remove either 1/3, 2/3 or all the biomass (plus a control). Plots will be established initially after plants germinate in the fall of 2012 and new sprouts will be removed weekly or as necessary to maintain these approximate proportions. Soil moisture is likely to vary as transpiration losses will be lower in the thinned plots, but surface evaporation may partially compensate. Importantly, annual grasses senescence and die shortly after seed-set, not when the soils dry out. Thus, at the beginning of the summer, there will be a suite of plots with different amounts of dead roots to serve as substrate within the soils, with relatively similar moisture conditions (depending on the timing of spring rainfall). Dry-down after senescence will be purely by evaporation.


Moisture manipulations will include control, lengthened summer drought, shortened drought, and no drought. To extend the drought, we will build rainout shelters to prevent rewetting during the winter following the thinning treatments. To shorten the drought, we will use weekly drip irrigation. The goal is not to keep soils constantly wet, but to mimic episodic precipitation and prevent soils from drying fully. The short-drought treatment will be irrigated into July, then allowed to dry normally, roughly halving the length of the typical drought. The no-drought treatment will be watered into October. We will regularly weed the watered-plots during the summer to remove new sprouts.


Soil moisture will be monitored continuously (using soil moisture probes and dataloggers) in the experimental plots. Soil samples will be collected from all treatments to analyze C dynamics at four points through the year: 1) At peak live plant biomass late in the growing season (April/May), 2) early summer (just before the short-drought watering ends; late June), 3) midsummer (August), and 4) the end of the dry season (October or early January for the extended drought treatment). We will collect samples from the top 10 cm and analyze the essential C pools, including roots, light and heavy fraction OM, microbial biomass, etc. As these measures will be coupled to the work specifically testing the research hypotheses, we describe the details of those analyses in those sections. The field sampling will assess how environmental factors (C-supply and moisture) regulate C-pools and microbial activities, and the begin identifying the mechanisms connecting them. We will couple these to laboratory incubation studies to tease apart the specific mechanisms.


Joshua Schimel                               7/1/14-6/30/17                                            704,320


National Science Foundation, PLR-1417758


Does E. vaginatum take up organic N?

Twenty years ago, Chapin et al. (1993) showed that Eriophorum vaginatum, the plant species that dominates arctic tussock tundra, not only can use organic N-sources, but actually grows better with amino acids as a sole N-source than with inorganic N salts. This catalyzed a cascade of research that transformed our vision of the plant-soil N-cycle; small N-containing organic compounds have replaced NH4+ as the centerpoint of the N cycle. A challenge of this shifting view however, is that no one has actually quantified, for any plant species growing in the wild, let alone for E. vaginatum-- how much of its total N demand is met by organic N-sources! The challenge to answering this question has been methodological; standard 15N isotope tracer methods show that many plants can take up amino acids, but without accounting for dilution of the 15N tracer into the native N pools as they rapidly turn over, they can not assess how much of the native compounds are taken up by plants. This project would overcome this problem and answer the question "Do plants really use organic N?" The project would use a combination of methods integrated through simulation modeling. The key novel method is microdialysis, in which a probe the size of a root is inserted into the soil, a carrier solution flows through it, and small molecules diffuse into it. If water is used as the carrier, it creates a diffusion gradient, while if a dextran solution is used, it draws water into the probe and so creates mass flow. Thus, this can indicate which substrates in soil are moving to the root surface. Microdialysis will be coupled with intact root uptake kinetic studies, isotope partitioning, and analyzing diffusion and transport of amino acids, NH4+ and NO3- through soil to parameterize a root uptake model that will be used to synthesize and integrate the results. This will allow evaluate the actual N sources used by E. vaginatum. The first phase of the work will be done under controlled conditions in the greenhouse; then having refined the methods and assessed model parameters, we will move into the field to assess seasonal patterns of N uptake and how it is affected by environmental manipulations.




David Siegel                                     1/1/13-12/31/15                                            30,424


Columbia University, 3 (GG006565-09)

Atmospheric Correction Over Coastal Oceans using Hyperspectral Imaging and Scanning Polarimetry (ACOCO-HISP)

This proposal addresses the NASA 2012 ROSES A.32 solicitation for research on improving atmospheric correction capability in remote sensing of coastal waters. The common approach for atmospheric correction is to use top-of-the-atmosphere (TOA) radiance in the near infrared (NIR) or short-wave infrared (SWIR) to select a ‘standard’ aerosol model, and to then use this model to calculate the TOA atmospheric radiance in the visible (VIS). This approach suffers from limitations that severely restrict the accuracy of water-leaving radiance retrievals especially in coastal regions covered by absorbing aerosols.   We propose using radiance observations in the near ultra-violet (NUV) and O2 A-band as well as polarized multiangle radiance measurements in the VIS-NIR-SWIR to improve the efficacy of atmospheric correction for remote sensing of coastal waters. We will mostly utilize currently sponsored flights of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) onboard an ER-2 (high-altitude) aircraft to obtain the requisite NUV and O2 A-band over the coast of California. We will provide the Research Scanning Polarimeter (RSP) onboard the ER-2 at minimal cost to obtain the requisite multiangle VIS-NIR-SWIR polarized radiance. We will expand existing inversion algorithms to include these radiance data, and expand our ocean model to include independent variations for underwater-light scattering and absorption. Validation of atmospheric correction results will be performed by comparing the resulting water-leaving radiance with ship-based measurements from the NASA Plumes and Blooms (PnB) ocean color project. We will compare our ocean color retrievals with those retrieved from coincident satellite observations, and perform extensive sensitivity studies, to evaluate the benefits to atmospheric correction of adding NUV radiance, O2 radiance, and multiangle VIS-NIR-SWIR polarized radiance to the common suite of VIS-NIR-SWIR ocean color observations.  The proposed research is the first to date to examine in detail and quantify the anticipated improvement in atmospheric correction when such measurements are included. The need for NUV radiance measurements to achieve this objective has been recognized in the recent formulation of threshold requirements for the NASA Pelagic and Coastal Ecosystem (PACE) mission. The PACE mission also advocates the contemporaneous use of multispectral and multiangle polarized radiance and of O2 A-band radiances to improve atmospheric correction. The results of the proposed research will also benefit other planned NASA missions, such as the Geostationary Coastal and Air Pollution Events (GEO-CAPE) and the Hyperspectral Infrared Imager (HyspIRI) missions, which add UV (and O2) bands and also require improved atmospheric correction algorithms.   Analyzing the AVIRIS, RSP and ship based measurements is a highly complex undertaking that requires a multidisciplinary team of specialists. Dr. Chowdhary has worked for over a decade on the simultaneous retrieval of aerosol and ocean properties from RSP measurements. He developed a state-of-the-art radiative transfer program for polarized underwater light, and is a member of the Glory Science Team (GST) and the PACE Science Definition Team (PSDT). Dr. Alexandrov, Dr. van Diedenhoven, and Dr. Knobelspiesse have worked extensively on developing state-of-the-art inversion algorithms for RSP and APS data, and are also members of the GST. Mr. McCubbin has been part of the AVIRIS team at JPL for 15 years, and has extensive flight operation experience with AVIRIS and the ER-2. Dr. Cairns is the instrument scientist for the RSP and APS instruments, a member of the PSDT and the GST, and has overseen analyses of RSP data from all previous field campaigns. Dr. Siegel is a member of the PSDT, has overseen the PnB project for more than 15 years and is a developer of recent satellite ocean color analyses that use spectral inversion algorithms.




David Siegel     Norm Nelson     Stéphane Maritorena     3/1/15-2/28/20     202,535


NASA Shared Services Center


North Atlantic Aerosol and Marine Ecosystem Study (NAAMES)

The UCSB In Situ Ocean Optics & Ocean Color Modeling Team will support the NAAMES field project by: 1) making in situ ocean optics profiles of downwelling and upwelling spectral irradiance and upwelled radiance spectra at each daylight station during the four scheduled field deployments; 2) collecting and analyzing discrete water samples for inherent optical property determinations (cf., ag(λ), aph(λ), adet(λ)), 3) archiving reduced and quality-checked data within four months after each deployment; 4) develop, validated and implement next generation biooptical models for retrieving ocean properties using NAAMES radiance spectra determinations; 5) participating in project planning and science discussions and meetings; 6) conducting individual/collaborative data analyses to address project objectives; and 7) presenting results at national/international meetings and in peer-reviewed journals in accordance with project schedules.




David Siegel                                     7/7/11-7/6/15                                              825,000


National Aeronautics and Space Administration, NNX11AL94G


Evaluating NPP Ocean Color Data Products in a Complex Coastal Environment: The Plumes and Blooms Program.

This effort will continue the Plumes and Blooms (PnB) satellite ocean color observational and analysis program and will use theses observations to understand the quality of NPP data products in the complex coastal environments. The scientific aim of the PnB program is the understanding of the dynamics of sediment plumes and phytoplankton blooms in a complex coastal ocean using satellite, ship and bio-optical glider observations. This aim is well suited for evaluating and creating new NPP ocean color data products. Specifically, we propose to:

¥       Continue the PnB monthly field sampling program of optical, biological, biogeochemical & hydrographic parameters in the Santa Barbara Channel,

¥       Use PnB data to evaluate NPP ocean color data products & algorithms,

¥       Supplement the PnB observational program with bimonthly, month-long oceanographic

glider deployments of physical and bio-optical parameters,

¥       Understand how phytoplankton functional type (PFT) regulates ocean color and inherent optical property (IOP) variability,

¥       Investigate the relationships among the particle size distribution (PSD) and IOP’s and develop methods for the robust assessment of PSD using NPP-VIIRS ocean color imagery,

¥       Use the coupled PnB ship, glider and satellite observations to investigate the dynamics of phytoplankton blooms and sediment plumes in a complex coastal ocean.




David Siegel      Fernanda Henderikx-Freitta      9/1/11-8/31/14                     90,000


National Aeronautics and Space Administration, NNX11AQ26H


Bio-optical Variability of Plumes, Blooms and Relaxations in the Santa Barbara Channel: How Biased are our Current Assessments?

Coastal waters are dynamic systems influenced by numerous atmospheric, marine and terrestrial processes that control the distribution of water column constituents in different temporal and spatial scales. Wind relaxation events, plumes and blooms are some of the mechanisms responsible for the mixing and transport of organic and inorganic materials such as larvae, nutrients, pollutants and sediments along the continental shelf. In the Santa Barbara Channel (SBC), California, these mechanisms cause dramatic changes in the color of the ocean on time scales of days to weeks. The variability of ocean color on short timescales has not been well characterized or accounted for by satellite remote sensing due to revisit time and sampling issues, which makes such observations impossible. Moreover, many ocean processes tend to develop under overcast conditions, when no imagery or in situ data is being collected, biasing the assessment of those systems to clear sky conditions. Underestimation of ocean productivity is also expected because phytoplankton pigmentation adapts to changes in light availability, and we might be biasing satellite observations of phytoplankton biomass to high light, clear sky conditions.


My research objective is to characterize the variability of bio-optical properties on time scales of days to weeks in the Santa Barbara Channel and account for the observations that have been missed by satellite systems due to unfavorable meteorological conditions. An electric glider will be used to make repeated bio-optical and physical measurements of the water column during plumes, blooms and relaxation events at excellent temporal and spatial resolutions, nearly independent of weather conditions. An extensive set of in situ data will be synthesized and used to complement NASA satellite ocean color data. The characterization of ocean color variability in the SBC in finer time scale will provide new insights about how the ocean responds to physical disturbances, what are the ecological implications of rapid changes in bio-optical properties of the water, and how the current under sampling influences how much we know about coastal marine ecosystems and primary productivity. This research will help answer questions related to bias and aliasing of remote sensing data, providing a new perspective about ocean dynamics in the SBC.





David Siegel      Thomas Bell           9/1/12-8/31/15                                                            90,000


National Aeronautics and Space Administration, NNX12AO05H


Hyperspectral Remote Sensing of Kelp Condition in the Santa Barbara Channel.

Giant kelp ecosystems are highly productive and provide habitat structure for a diverse assemblage of biological and economically important species. Recent studies using Landsat multispectral imagery have successfully assessed changes in kelp biomass at temporal and spatial scales once deemed infeasible. This proposed study would extend this work and use hyperspectral images (AVIRIS) of giant kelp forests in the Santa Barbara Channel to determine the age structure and condition of kelp fronds and relate changes in frond demographics to physical and environmental variables already measured by the Santa Barbara Coastal Long Term Ecological Research (SBC LTER) project at UCSB. Measurable differences in the in vivo reflectance spectra of giant kelp fronds at different life stages have been confirmed by earlier studies. Giant kelp blades of known age will be collected once per month and photosynthetic characteristics will be measured in the laboratory through the use of oxygen evolution and fluorescence spectroscopy. The proposed project will help assess how the impacts of a changing environment impact nearshore nutrient cycling and biodiversity. AVIRIS images of SBC LTER kelp forests from 1997 to present are available for our use. We are in possession of all equipment to be used for analysis of giant kelp in vivo reflectance spectra and photosynthetic characteristics and are in a position to immediately begin work. The proposed project supports the NASA 2010 Science Plan objective of “Advance(ing) Earth System Science to meet the challenges of climate and environmental change” for a keystone ecosystem species with important economic value.




David Siegel                                  10/1/12-11/12/14                                           102,158


National Aeronautics and Space Administration, NNX13AC35G


Controls on Open Ocean Productivity and Export eXperiment - COOPEX


The determination of rates of net community production (NCP) and export production (EP) is important for many global ocean problems including understanding the role of the biological pump on atmospheric CO2 levels and thereby climate as well as the predicting the impacts of fossil fuel CO2 emissions on ocean ecosystems and biogeochemical cycles.  The determination of EP and NCP on regional to global space scales and seasonal to interannual time scales is central for the rationale for NASA’s up-coming Pre-Aerosol-Cloud-Ecosystems (PACE) mission. However, our ability to assess these important carbon cycle parameters from satellite data remains quite limited and new approaches and data sets are desperately needed. 


We propose the development of a major field campaign focused on a process level description of NCP and EP to provide progress toward the prediction of important carbon cycle parameters on local to global scales. This field campaign we have coined (for now) as:  “Controls on Open Ocean Productivity and EXport – COOPEX”.  The overarching question for COOPEX is How do upper ocean processes control net community production and carbon export in the open ocean and the sequestration of exported carbon to depth?  A major field campaign focused on controls of carbon cycling parameters is needed to elucidate the underlying mechanisms controlling NCP and EP in the open ocean and provide the necessary data and models to assess changes in these parameters that can be measured by satellite observations.  There are many recent technical advances in remote sensing science, ocean biogeochemistry, bio-optics, autonomous sampling platforms and coupled physical-ecological-biogeochemical numerical modeling that make this vision a possibility – and one that needs to be accomplished now. 


Here, we request support from the NASA Ocean Biology and Biogeochemistry program to develop an implementation plan for COOPEX.  Funds are requested for a small scoping workshop of domain experts (~25) to be held at UC Santa Barbara to scope and formulate the COOPEX implementation plan. The scoping workshop and the implementation plan writing will be led by Dave Siegel (UCSB) and Ken Buesseler (WHOI).  Assisting them is a team of domain experts that will help steer the project forward and will assist in the writing of the implementation plan.




David Siegel                                  7/7/14-7/6/17                                                       602,001


National Aeronautics and Space Administration, NNX14AL94G


Plumes and Blooms: A Multi-Decadal Coastal Bio-Optical Time-series and Retrospective Data Analysis

The focus of the Plumes and Blooms (PnB) program is to understand, predict and utilize changes in ocean color in the complex coastal waters of the Santa Barbara Channel (SBC), California. The core element of the PnB program is the monthly, day-long sampling of 7 stations across the Santa Barbara Channel.  At each station, a full suite of bio-optical and oceanographic measurements is sampled and nearly 80 stations are completed each year. Coupled with the highly dynamic nature of the SBC, the PnB data are incredibly useful for answering coastal ocean color science questions and for validating satellite data products. PnB field observations started in 1996 and they have continued continuously to the present. 



David Siegel      Norm Nelson            1/1/11-12/31/14                                                        765,235


National Science Foundation, 1040502


MRI: Development of Novel Profiling Buoy Technology for Satellite Ocean Color Calibration and Data Product Validation.

The Near Surface Profiling Buoy system is a floating/profiling optical sensor system that will enhance the calibration and validation of ocean color data from satellite instruments, enabling the collection of long-term climate data records of the ocean biosphere. Intellectual Merit: We propose to develop and evaluate the performance of a novel profiling buoy system for the calibration of satellite ocean color observations and the validation of their data products. This measurement capability is essential for creating longterm satellite climate data records of the ocean biosphere – but the costs of building and deploying existing moored buoy systems are excessive ($M’s to build & ~$1M/y to deploy for each site). Our system, the Near Surface Profiling Buoy (NSPB), will autonomously collect 100’s of high-quality, near-surface irradiance / radiance profiles during each multi-day deployment as part of a standard oceanographic research cruise. The NSPB is built upon recent advances in optical profiling instrumentation designed for turbid water environments that is adapted to the calibration and validation of ocean color satellite data. The NSPB system is aimed at making day-long to week-long deployments improving the likelihood of high quality match-ups with satellite data than is possible with conventional profiling techniques. This will alleviate wire time constraints for shared research cruises, maximizing the return on research vessel time (often >$50K/day). The NSPB will be a cost-effective alternative to long-term, moored optical buoy installations for satellite ocean color sensor calibration and eliminates the need for addressing biofouling and extrapolation of subsurface signals to the sea surface, which are the major sources of uncertainty for long-term moored systems. We will test and deploy the NSPB system in both coastal and open ocean conditions as part of on-going UCSB research projects in the Santa Barbara Channel (PnB) and the Sargasso Sea (BBOP). System performance will be assessed and compared with traditional long-term moored buoy systems and conventional ship-based spectroradiometry profiling. All radiometric measurements will be fully characterized and tied to NIST standards and system radiometric performance will be monitored at UCSB. Broader Impacts: This equipment development will help reenergize long-term field research programs conducted by the UCSB group. More importantly, it will help solve a national need for a low-cost, high-performance, flexible buoy system for the calibration and validation of satellite ocean color observations. This development project has the potential to greatly improve the accuracy of present and future satellite ocean color sensors, which will have impacts far beyond this instrumentation development request. It will also involve a significant collaboration between academic researchers and the private sector that will advance the state of the art in optical technology and facilitate acquisition of quality data and instrumentation for long-term records of the ocean biosphere.




David Siegel      Rachel Simons Bruce Kendall   2/1/12-1/31/16                                     370,141


National Science Foundation, OCE-1155813


Quantifying the importance of biological factors in the estimation of

larval connectivity and population dynamics in the coastal ocean.

Larval connectivity, which quantifies the intensity and pathways of connections among populations through the dispersal of larvae, is a critical factor in marine population dynamics and has broad reaching consequences for marine spatial planning and fisheries management. Biophysical models, consisting of ocean circulation models combined with Lagrangian particle tracking, are now widely used to provide insights into the spatial and temporal dynamics of larval connectivity that remain unobtainable through empirical approaches. However, many of the biological assumptions used to characterize larval life history in these models are quite general and the impacts of these assumptions have yet to be rigorously tested. Our goal in this proposal is to quantify How important are the details of larval biology in estimates of connectivity and long-term population dynamics? To answer this question, we propose to study the spatial and temporal impacts of larval biological factors on site-to-site connectivity and long- term population growth using a biophysical model for nearshore species in the Southern California Bight (SCB). Four major, larval biological factors will be investigated: (1) temperature effects on larval growth, maturation and mortality, (2) vertical swimming behavior, (3) spatial/temporal variability in larval production, and (4) role of habitat on settlement. Using a biophysical model of the SCB, differences in larval connectivity due to the biological factors will be assessed statistically by comparing connectivity estimates that incorporate the additional biological factors to a baseline of connectivity estimates calculated from passive, neutrally buoyant particles. We will also employ a spatial demographic model, driven by the connectivity estimates, to quantify the influence of biological factors on long-term population dynamics. The proposed work will generate significant insights into the various aspects of larval biology that are critical for determining larval connectivity and for projecting population dynamics into the future. The results of this project will improve the credible application of biophysical modeling approaches to scientific studies of coastal species as well as to marine spatial planning and -fisheries management.




David Siegel                                     6/30/14-6/30/16                                                            80,286


Oregon State University, NS257A-A


MODIS-based phytoplankton carbon and photoacclimation: responses to climate variability

On this collaborative project, the focus of the UCSB work will be comparing the MODIS-Aqua particulate backscatter coefficient (bbp) retrievals with LIDAR-based retrievals bbp from the CALIOP lidar. The UCSB group will work with global data from two ocean color algorithms; the Garver, Siegel and Martiorena (GSM) model (Maritorena et al. 2002, 2010; Siegel et al. 2013) and the Quasi-Analytical Algorithm (QAA; Lee et al. 2002). In particular, we will make refinements to the Garver, Siegel and Martiorena (GSM) algorithm based upon these comparisons and will develop uncertainty estimates for the bbp retrievals.





Alexander Simms                            1/1/13-3/31/16                                            100,000


American Chemical Society, 52790-ND8


Hyperpycnal Subaqueous Fans of the Northern Santa Barbara Channel, Central California, USA

The importance of hyperpycnal flows in cross-shelf transport of sand has only recently been widely recognized.  Attempts at creating a facies model for hyperpycnal flow deposits are based on either ancient examples where their presence can only be inferred from sedimentary characteristics or modern studies that sample the flows themselves but not necessarily their deposits.  The study of Quaternary systems bridges the gap between modern processes, which provide predictive metrics of sedimentary characteristics, and ancient deposits representing petroleum reservoirs.   The few existing Quaternary examples of deposits produced by hyperpycnal flows focus on the broad scale of deposition and rarely describe individual geomorphic features resulting from hyperpycnal flows.   A recent marine bathymetric survey of the northern Santa Barbara Channel continental shelf by the United States Geological Survey (USGS) revealed the presence of shallow-water submarine fans immediately offshore of several small mountainous streams.  Based on observations of modern discharges from these and similar systems in the northern Santa Barbara Channel, we hypothesis that these geomorphic features represent the deposits of hyperpycnal flows and dense bedload-dominated underflows emanating from steep mountain catchments.  The purpose of this proposal is to characterize these features using high-resolution seismic profiles, sediment grab samples, underwater camera operations, and shallow cores.  The characterization of these deposits will allow an evaluation of their potential for reservoir quality sands and provide one of the few modern examples of a subaqueous fan delta from a semi-arid setting. 




Alexander Simms     Ralph Archuleta          2/1/12-1/31/16                              40,700


University of Southern California – SCEC Y86552-L

SCEC4 Participation, Project L: Collaborative Research: Documentation of Tsunami Deposits in the Carpinteria and Goleta Slough Estuaries: A signal of Great Earthquakes on the Pitas Point

Large earthquakes and their associated tsunamis including recent earthquakes and tsunamis in Sumatra (2004) and Japan (2011) have brought into sharp focus the hazards associated with convergent margins. The Transverse Ranges is southern California’s version of a convergent margin and recent work between Ventura and Carpinteria has demonstrated that the Ventura Avenue Anticline (VAA) and associated Pitas Point – Ventura thrust have produced large uplift events. The amount of inferred uplift, on the order of 7-8 m per event, likely results in the production of a sizable tsunami along the Santa Barbara – Ventura County coastline, although until recently no one has looked for tsunami deposits in this region. Prior work in Carpinteria Salt Marsh has identified a potential tsunami layer and a stratigraphy suggesting the presence of subsidence events within the marsh.  In this coming year, we propose two primary tasks to test whether a coseismic subsidence signal is present and provide more support for a tsunami origin for the deposits. First, we will need to create a metric within Carpinteria Salt Marsh to test for sudden subsidence events.  This will be done by conducting a survey of modern microfossils (foraminifera and diatoms) in order to establish transfer functions for high-resolution sea-level index points to be used to quantify subsidence.  Second, we propose to duplicate this study in nearby Goleta Slough to determine if a similar record of proposed tsunami deposits is present.




Alexander Simms                                                     8/1/14-7/31/15                                     19,508


US Geological Survey, G14AC00277


Geologic Controls on Karst in western Oklahoma

Western Oklahoma is host to over 1200 feet of interbedded shales, sandstones, and gypsums.  The gypsums of western Oklahoma provide natural resources for local economic development but also pose a risk to transportation and other infrastructure.  The area is prone to karst and similar to the neighboring Texas Panhandle, the age and geologic controls on karst are still relatively poorly understood.  During a mapping project of the Washita National Battlefield in western Oklahoma, the PI and a former undergraduate student noted the development of inverted topography from karst.  The purpose of this proposal is to expand the limited mapping (<35 km2) conducted as part of that project in order to better understand the distribution of karst landforms in the region and gain better insights into the timing and controls on karst formation in western Oklahoma.  Our central hypothesis is that karst follows the major late Quaternary drainages of the region.  If this is true it suggests a tie between river incision and karst in the region.  However, this leaves unresolved whether the karst controlled river development or river incision lead to karst formation.  The relationship between karst and the other Cenozoic stratigraphic units (e.g. Neogene Ogallala Formation, Quaternary Terraces) will allow for this differentiation.  In order to test our central hypothesis we will map the surface geology of two quadrangles in western Oklahoma.  We expect to find that the inverted topographic features within our study area created due to karst are only found along the major stream courses and the karst cross-cuts the Ogallala Formation but not the Quaternary terraces.   If our hypothesis is correct that would suggest that karst in this region is no older than the stream courses.



Michael Singer                                1/1/13-12/31/15                                            96,466


National Science Foundation, EAR - 1226741


Collaborative Research: Establishing Process Links Between Streamflow, Sediment Transport/Storage, and Biogeochemical Processing of Mercury.

This research effort is an investigation that ties together fluvial geomorphology and biogeochemistry in a manner that will a) identify critical locations in fluvial systems where the risk of mercury (Hg) input to food webs increases and b) elucidate the processes by which this occurs. The proposed research will develop new understanding of the interplay between hydrology, sediment transport/storage, and biogeochemistry. The project is designed so that this new knowledge can be generalized and readily transferred to a wide range of fluvial systems beset by sediment-adsorbed contaminants. The study will focus on the longitudinal (downstream) transport and biogeochemical processing of sediment-adsorbed Hg derived from hydraulic gold mining in the Sierra Nevada and mercury mining in the Coast Ranges within and through the Yuba-Feather-Sacramento River system of Northern California, USA. It will document the primary sources (Coast Range v. Sierra Nevada) of Hg contamination to lowland ecosystems in the Sacramento Valley and Bay-Delta and the relative contribution and risks of each. It will challenge conventional wisdom by assessing how Hg bioavailability changes along sediment transport pathways, irrespective of total Hg concentrations, and by identifying/quantifying the controlling processes at the intersection of sedimentation/inundation and biogeochemical modifications of Hg speciation. The proposed work will: 1) mathematically model flood inundation in river corridors to identify areas of high potential of oxidation/reduction; 2) identify preferential zones of sedimentation through numerical modeling of eventbased washload transport and interpret relative sediment deposit age via a detailed and spatially extensive library of sedimentary histories from prior work; 3) identify distinct contamination sources to lowlands by conducting Hg stable isotopic analysis of sediment; and 4) investigate Hg speciation and reactivity in conjunction with changes in Hg species isotopic signatures, associated with redox conditions, sediment source, and ambient chemistry.



Christopher Sorlien     Bruce Luyendyk       1/1/14-12/31/16                         155,539


National Science Foundation, PLR-1341585


Subsidence, Tilting, Sedimentation, and Oligocene-middle Miocene paleo-depth of Ross Sea

 It has been proposed that the Ross Embayment and much of West Antarctica was a high elevation plateau supported by thick crust before rifting commenced 104 Ma, and has extended and subsided since then. As extension waned towards the end of the Cretaceous (east) or the Paleogene (west), the Ross Embayment lithosphere continued to subside creating the proto Ross Sea. A seismic-stratigraphic and modeling study is proposed to address the transition from basement rock near and above sea level across most of the future Ross Sea region in early Cenozoic time, to sedimentation in shallow water by the end of Oligocene time and into the early Miocene. Paleo-depths and the nature of the sea floor/subaerial surface through time will be quantified, providing models for Oligocene-early Miocene paleo-topography and tests for hypotheses for extension in the Ross Embayment. This work affects modeling of West Antarctic ice volumes, including large early Miocene volume fluctuations.



Christopher Sorlien                       1/1/14-6/30/15                                              55,713


US Geological Survey, G14AP00012


Post-1 Ma Deformation History of the Pitas Point-North Channel-Red Mountain Fault System and Associated Folds in Santa Barbara Channel, California

Evidence for 6 to 8 meter uplift events west of Ventura have been linked to proposed paleo-quakes approaching Magnitude 8.0. The north margin of rapidly-shortening, rapidly-subsiding offshore and onshore Ventura Basin is comprised of major N-dipping faults. These faults extend 200 km between Pt. Conception and the east end of the Santa Susana fault. Vertical motion is partly across a narrow fold scarp in Ventura and the near offshore. This local fold dies out farther offshore and is replaced by broad forelimb tilting. Such tilting implies a continuously variable, but predictable, pattern of subsistence and uplift. Fault representations in the SCEC Community Fault Model (CFM) indicate discontinuities in the shallow faulting that may limit the M<=6.7 for 20th century quakes on this system. M6 1/2 quakes can be disastrous enough, and because they are much more frequent for the same shortening than major quakes, their hazard is high. However, tsunami hazard is much less for a M6.5 than a M7.5 thrust quake, and whether a particular building, bridge, or mountainside will collapse is also affected by the duration of strong ground motion. Does the development of, and shortening across the regional fault system over the last 1 My suggest multiple segment ruptures and major quakes?


Multiple grids of 2D industry, USGS, and academic seismic reflection data and eight 3D surveys have recently become publicly available. Nine horizons, precisely dated between 975 ka and 120 ka, have only been integrated with all these data across the central 40 kn of the offshore part of the fault system. A series of published well cross sections will also be incorporated. The existing 3D velocity model from sonic logs and checkshot surveys will be extended to the east and west and to greater depth. Data integration will be accomplished using an industry seismic and well interpretation software. Three dimensional kinematic modeling will include unfolding stratigraphic horizons and reassembling them across faults, and/or trigonometric modeling of tilt and imaged fault 3D attitude vs. slip direction and magnitude, and/or use of volumes in hanging-wall anticlines above footwall basin references.


Products from this study will include revised and new 3D representations of fault surfaces and stratigraphic horizons, and new estimates of fault slip rates and slip directions. The digital fault representations will be provided to the SCEC Community Fault Model and to U.S.G.S. researchers, and the digital stratigraphic grids in time and depth will be supplemental data to a publication. Implications include strong ground motion duration and tsunami hazard between Oxnard-Ventura and Santa Barbara-Goleta. Work will also include part of the Pitas Point-North Channel fault system west of Pt. Conception, where it interacts with NNW-striking faults including the southernmost Hosgri fault.






Jamison Steidl                                 10/1/11-9/30/15                                            75,012


Northeastern University, 501947-78052


Induced-Partial Saturation Through Transport and Reactivity for Liquefaction Mitigation.

UCSB, as an equipment site within the NSF George E. Brown, Network for Earthquake Engineering Simulation program, provides assistance to researchers in using the NEES@UCSB field sites for conducting experiments related to earthquake engineering. In this proposal, UCSB will be working as a subcontractor to Northeastern University, the lead institution.


UCSB will be providing scientific expertise and technical assistance in the planning, deployment of instrumentation and the induced partial saturation delivery system, and experiments using active mobile shakers from UT Austin, all taking place at the NEES@UCSB Wildlife Liquefaction Array facility. UCSB will work as an advisor to the project PI and co-PI’s in order to help assure that the experiments are successful and are conducted without affecting the existing permanent instrumentation at the facility. Technical assistance will be provided during the field work and experimentation at the facility.


The NEES@UCSB field site will provide access to the facility, and assistance with the integration of the collected data into the NEEShub for this project. No charge for the data telemetry and IT services are being charged in this subcontract, as these will be covered by the NEES@UCSB operations contract with NEEScomm at Purdue. In addition, NEES@UCSB student lab assistants who work on the operations contract may assist in the field work, depending on the schedule.




Jamison Steidl                                 5/1/15-1/15/16                                            186,000


Nuclear Regulatory Commission, NRC-HQ-60-15-C-0001


Observations and Analysis of Geotechnical Array Data

This project is to provide observations from the densely instrumented geotechnical array field sites associated with the University of California at Santa Barbara (UCSB) monitoring program for use in confirmatory research and in the development of regulatory guidance at the U.S. Nuclear Regulatory Commission. These field sites, the Wildlife Liquefaction Array, the Borrego Valley Downhole Array, the Garner Valley Downhole Array, the Hollister Earthquake Observatory, the Seattle Liquefaction Array, and the Delaney Park Array, are geographically distributed throughout the most hazardous part of the United States, including three sites in southern California, one site in central California, one Pacific Northwest site in Seattle, and one site in Anchorage Alaska. The design objective of these sites was to capture the penultimate earthquake in each region and instrumental observations of the earthquake effects associated with such events. The broader objective is to capture a suite of earthquakes covering a range of ground motions and strain levels at each of these sites, to enable calibration of ground motion prediction models that include the effects of the near-surface geology from linear through nonlinear behavior. The California sites are operated solely by UCSB, while the Seattle and Anchorage sites are operated by the Pacific Northwest Seismic Network (PNSN) and the United States Geological Survey (USGS) respectively, with some assistance from UCSB. The data from all six of these facilities flows in real-time to UCSB and is disseminated along with the relevant metadata at the UCSB geotechnical array data portal ( Contributing to the development and validation of models for site response, liquefaction initiation, ground displacements and settlement, and soil-foundation-structure interaction effects, are the primary goals of this observation and analysis effort.




Jamison Steidl                                 10/1/09-11/30/14                                     2,613,461


Purdue University, NEES-4101-31902


NEES Consortium Operations: 2004-2014.

The NEES@UCSB facility consists of permanently instrumented geotechnical test sites designed to improve our understanding of the effects of surface geology on strong ground motion. The instrumentation at these sites includes surface and borehole arrays of accelerometers and pore pressure transducers designed to record strong ground motions, excess pore pressure generation and liquefaction that occurs during large earthquakes. An instrumented structure is also monitored to improve our understanding of soil-foundation-structure interaction (SFSI) effects.


Located in the Imperial Valley of Southern California within the Imperial Wildlife Management Area, the Wildlife Liquefaction Array is a fully instrumented site in an area that has historically produced significant ground motion and liquefaction effects. The Garner Valley Array is a thoroughly characterized strong-motion monitoring site with surface accelerometers, borehole pore pressure transducers and accelerometers, and an extensively instrumented SFSI test facility. Both the Garner Valley and Wildlife Field Sites records earthquakes on a daily basis, and are used in active testing experiments.


Data from these field sites is recorded continuously in real-time on a 24/7 basis, and 100’s of earthquakes are segmented out of the continuous stream and included in a web-based data dissemination portal. These event data are also transmitted to NEEShub and stored in the NEES Project Warehouse database. Serving the experimental research community that use these facilities for active testing, and analysis of the data these sites produce, is our primary goal for this project. The operations and maintenance of these field sites, to ensure that the next “Big One” is recorded and all sensors are operational is another primary goal of this project.



Jamison Steidl  Ralph Archuleta         2/1/15 – 1/31/16                                     21,515


University of Southern California, 15172


SCEC4 Participation, Project P: SCEC Borehole Instrumentation Program

The SCEC borehole instrumentation program, located at the Earth Research Institute (ERI) at UCSB, maintains existing borehole stations and facilitates the installation of new borehole stations in collaboration with other agencies responsible for earthquake monitoring in southern California. The borehole network consists of 18 stations funded through cost sharing between SCEC and EarthScope, CGS, USGS/Caltech, Caltrans, and the NRC. The instrumentation is used to gain a better understanding of the near-surface effects on ground motions, to improve our ability to account for these effects in simulations of ground motion, and to get a more detailed observation of the earthquake source by avoiding the near-surface layers that typically attenuate high-frequency radiation.


Sites are located within the Los Angeles region and along southern California’s major fault systems. The instrumentation consists of the 3-component Kinemetrics FBA ES-DH borehole package paired with a 3-component Kinemetrics surface FBA ES-T. The Kinemetrics Episensor technology, when connected to a 24-bit data logger, provides quality recordings of earthquakes from M=2 and above. The upper limit of this force balance accelerometer technology is usually set to +/- 2G to enable recording of strong ground motion from damaging earthquakes. All sites provide data in real-time to the CISN and data is archived and available through the SCEDC.





Jamison Steidl           Ralph Archuleta                  2/1/12-1/31/15                                     88,000


University of Southern California, Y86552-A


SCEC4 Participation, Project A: SCEC Borehole Instrumentation Center

The SCEC borehole instrumentation program, located at the Earth Research Institute (ERI) at UCSB, maintains existing borehole stations and facilitates the installation of new borehole stations in collaboration with other agencies responsible for earthquake monitoring in southern California. The borehole network consists of 18 stations funded through cost sharing between SCEC and EarthScope, CGS, USGS/Caltech, Caltrans, and the NRC. The instrumentation is used to gain a better understanding of the near-surface effects on ground motions, to improve our ability to account for these effects in simulations of ground motion, and to get a more detailed observation of the earthquake source by avoiding the near-surface layers that typically attenuate high-frequency radiation.


Sites are located within the Los Angeles region and along southern California’s major fault systems. The instrumentation consists of the 3-component Kinemetrics FBA ES-DH borehole package paired with a 3-component Kinemetrics surface FBA ES-T. The Kinemetrics Episensor technology, when connected to a 24-bit data logger, provides quality recordings of earthquakes from M=2 and above. The upper limit of this force balance accelerometer technology is usually set to +/- 2G to enable recording of strong ground motion from damaging earthquakes. All sites provide data in real-time to the CISN and data is archived and available through the SCEDC.




Jamison Steidl      Ralph Archuleta           2/1/12-1/31/16                                 89,000


University of Southern California, Y86552-B


SCEC4 Participation, Project B: The SCEC Portable Broadband Instrument Center

The SCEC Portable Broadband Instrument Center (PBIC) was established to provide researchers in southern California with year-round access to a "pool" of portable seismic recording equipment. The PBIC maintains this equipment and also serves as a RAMP facility in the event of significant earthquakes. At other times PBIC equipment is used on projects related to SCEC science and data gathering goals.


Instrumentation consists of Quanterra 6-channel 24-bit data loggers and Kinemetrics 8-channel 24-bit data loggers, all with real-time capabilities through cellular or internet telemetry. Sensors consist of high output velocity transducers to record very small ground motion and force balance accelerometers designed to stay on-scale for the strong ground motion expected from very large earthquakes (up to +/- 2G). A broad dynamic range of recording is obtained by pairing both types of sensors with a single 6-channel recorder. These include Mark Products L4C-3D 1Hz velocity transducers, Guralp CMG 40T broadband sensors, and Kinemetrics FBA-EST accelerometers.





Lisa Stratton                                    1/1/14-1/31/15                                              10,000


Outhwaite Foundation, SB140075


Ellwood-Devereux Connecting the Community & Nature

In 2004 the Ellwood-Devereux open space area was created which protected 652 acres of coastal open space in Goleta. A key puzzle piece, however, was the 64 acre privately owned Ocean Meadows golf course property which limited public access to the larger open space and created a legacy of adverse wetland impacts resulting from the filling of the upper arms of Devereux Slough with soil from the adjacent uplands. Thanks to the work of The Trust for Public Land, the former golf course was purchased and donated to UCSB. The goal of the larger project is to return this golf course to its original wetland status and incorporate public access and education in the process.


During the next one to two years, UCSB will be working on the permitting process and preparing proposals to fund the restoration component. This time span provides a window of opportunity to engage the community in the process and to develop a stewardship role for the neighboring families and Goleta residents. The goal of this effort is to provide a year of monthly, family-oriented, educational and engaging weekend events, which will connect local residents to this newly acquired property and to our organization. Benefits to the community members include the opportunity to learn about our local ecology, to participate in the restoration vision and process and to work as a community in the Ellwood-Devereux open space that is being restored and preserved for future generations. Funding from Outhwaite Foundation would be used to create an educational program that will become a regular part of people’s lives and develop a community of environmental stewards.




Lisa Stratton                                                 2/1/15-11/30/15                                                           6,500


Outhwaite Foundation, SB150075


Ellwood-Devereux Connecting the Community with Nature

In 2004 the Ellwood-Devereux open space area was created, which protected 652 acres of coastal open space in Goleta.  A key puzzle piece, however, was the 64 acre privately owned Ocean Meadows golf course property, which limited public access to the larger open space and created a legacy of adverse wetland impacts resulting from the filling of the upper arms of Devereux Slough with soil from the adjacent uplands. Thanks to the work of The Trust for Public Land, the former golf course was purchased and donated to UCSB. The goal of the larger project is to return this golf course to its original wetland status and incorporate public access and education in the process. The Cheadle Center for Biodiversity and Ecological Restoration (CCBER) will play a key role implementing the project. 




Lisa Stratton                                    10/1/12-9/30/15                                            44,800


U.S. Fish & Wildlife Service, F12AC00683


Recovery Activities for Nipomo Lupine

Lupinus nipomensis (Nipomo lupine) is a small annual plant in the pea family (Fabaceae). Historically and currently, the species is known only from the southwestern corner of San Luis Obispo County, California, scattered over an area of approximately 2 miles wide and 2 miles long. Lupinus nipomensis is restricted to one extended population of a few hundred individuals. The species is faced with a high risk of extinction due to the extremely low number of individuals and an intense degree of threats. The species may face extinction within the next 5 years.

To reduce the risk of extinction, we propose to implement the following recovery actions: Task 1: introduce populations to suitable habitat in the Guadalupe-Nipomo Dunes region. Suitable habitat may include lands managed by the U. S. Fish and Wildlife Service at Guadalupe-Nipomo Dunes National Wildlife Refuge, California State Parks, the Land Conservancy of San Luis Obispo County, and private lands; Task 2: conduct a seed bank analysis at the existing and historical occurrences, and Task 3: Undertake population enhancement though supplemental watering of existing occurrences.




Sangwon Suh                                                            7/15/14-6/30/18                                                           466,517


City University of New York (CUNY), 40E48-A


WSC-Category 3: A National Energy-Water System Assessment Framework (NEWS): Stage I Development

This effort focuses on the development of a multi-sector dynamic model for energy deployment, which will be integrated to energy-climate-water model to be developed by CUNY. The model should reflect technology development, and changes in energy demand over time considering both direct and indirect relationships between sectors of an economy.




Sangwon Suh                                   3/15/13-2/28/15                                            99,795


National Science Foundation, 20130851


Impact of shale gas on renewable energies

In this project, we will examine (1) the effects of rising shale gas production on the deployment of renewable energy technologies in the short and long run; and (2) the effect of potential policy measures, existing or new, on energy mix change under the presence of shale gas in the U.S. Drawing on the insights from previous studies, our proposed work will concentrate on the energy sector in the U.S. at finer temporal and technological scales using process level information and system dynamics models. We will also test a broader range of technology and policy scenarios and identify policy instruments that help promote renewable energy technologies. Our first step is to build an integrative model centered on a system dynamics framework, coupled with life cycle inventories (LCIs) of various renewable and other low-carbon energy technologies. In so doing, we will capitalize on our previous USDA/DOE project, in which we integrated system dynamics model with life cycle assessment (LCA) to identify cost-effective pathways to achieving the national Renewable Fuel Standard (see Another major source of data will be our ongoing project on low-carbon energy technologies including wind, photovoltaics, concentrated solar power, geothermal, hydropower and carbon capture and storage. Under this project LCIs of renewable energy technologies and other low-carbon energy technologies are compiled, and they are connected to different policy scenarios that mitigate greenhouse gas emissions from 2010 to 2050. This model accounts for technology change and changing energy mix over time, but the model does not currently interact with policy interventions. Coupling the data and results acquired from this project with a system dynamics model will enable us to simulate different policy and technology scenarios. The data and the model that have been compiled so far do not include those of shale gas development. Therefore, after construction of the integrative model, we will add the component of shale gas and develop an array of technology and policy scenarios to simulate potential influences that rising shale gas production would exert on the rest of the energy sector, particularly on renewable energy technologies. Furthermore, the scenario development will help us identify policy measures that can lead to least cost, least greenhouse gas (GHG) emissions. A preliminary list of scenarios worth exploring include (1) continuous increase in shale gas in the mid to long run (baseline), (2) nation-wide implementation of a California’s low carbon fuel standard (LCFS), (3) carbon tax on fossil energy, (4) federal and state subsidies and credits for low-carbon technologies, and (5) relief of control over natural gas export largely to emerging countries like China and India to replace their coal combustion, which would boost U.S. economy but likely bring domestic natural gas prices back pre-shale gas situations.




Samuel Sweet                                  6/1/12-6/1/17                                                12,013


U.S. Fish & Wildlife Service, F12AC01020


Research and Restoration at Casmalia Landfill: Ecosystem Evaluation and Restoration for Species Recovery.

The Casmalia Landfill Superfund Site is located approximately 10 miles southwest of the city of Santa Maria in Santa Barbara County, California.  The site was owned and operated by Casmalia Resources and accepted approximately 5.6 billion pounds of waste between 1973 and 1989.  Waste disposal units at the site included: 6 landfills for pesticides/solvents, metals, caustic/cyanides, acids, and non-liquid polychlorinated biphenyls; 43 surface impoundments; 15 evaporation pads; 2 non-hazardous waste spreading areas; 6 oil field spreading areas; 11 shallow injection wells; 7 disposal trenches; 1 drum burial unit; and 6 landfills.


The site supports five stormwater ponds that may serve as an attractive nuisance to wildlife.  The federally endangered California tiger salamander (Ambystoma californiense) and federally threatened Calfornia red-legged frog (Rana draytonii) have been detected at the site.  In 2001 the U.S. Fish and Wildlife Service (Service) entered into an agreement with EPA to extend a covenant not to sue for Natural Resource Damages to potentially responsible parties as part of a de minimis settlement.  The Service received $178,250 in settlement funds in exchange for the issuance of the covenant not to sue.  The Service intends to use these funds to conduct restoration that will benefit the California red-legged frog, California tiger salamander, and other trust resources.


Biological surveys were conducted in the late 1990s and early 2000s in support of EPA’s ecological risk assessment and remedial investigation.  Updated surveys are necessary in order to determine current usage of the site by our trust resources, and to best guide the use of the limited settlement dollars available to conduct restoration. 


The Ventura Fish and Wildlife Office proposes to use the requested funding to conduct surveys for the California red-legged frog and California tiger salamander in strategic locations within the site and surrounding habitats to determine current usage of the site by these species.  Surveys for California red-legged frogs were previously conducted in 1998, 1999, 2001, 2002, 2003, and 2004.  Surveys for California tiger salamanders were conducted in 2002/2003, and 2004/2005.  California red-legged frogs were detected in all survey efforts with the exception of 2004.  California tiger salamanders were detected during drift fence surveys in 2004/2005. 

Because California tiger salamander surveys have never been replicated at the site in the six years since the species was detected, and because the species is so acutely imperiled within Santa Barbara County, information about presence or absence of the species at the Casmalia Resources site would be invaluable.  In addition, previous surveys for California tiger salamanders established presence of metamorphosed individuals in upland habitat, but the extent of California tiger salamander breeding in aquatic resources at the site remains unknown.  The trend in observations of California red-legged frogs throughout the 1998 to 2004 study period demonstrated a rapid decline from over 50 individuals detected in 1998 to no individuals detected in 2003 or 2004.  The absence of California red-legged frogs in 2003 and 2004 is suspected to be associated with low water levels in the stormwater ponds due to pumping of water for the construction of a landfill cap, and increasing total dissolved solids (TDS) in the stormwater ponds.  The water level in all ponds is currently high relative to 2003/2004, however TDS remains high and the use of the ponds by California red-legged frogs and California tiger salamanders is unknown.  It is likely that the high TDS is creating an attractive nuisance for the California tiger salamanders and California red-legged frogs attempting to breed at the site.  This project will evaluate the need for (through aquatic and upland surveys) and feasibility of, creating additional breeding ponds at the site to provide suitable breeding habitat away from areas with high TDS.  Ponds will subsequently be created as deemed appropriate and monitored in subsequent years.


The proposed surveys will assist the Service in providing technical assistance to EPA during the remedial process, and implementing restoration for the California red-legged frog and California tiger salamander.  Updated information about the use of the site by California tiger salamanders and California red-legged frogs will support the Service’s effort to work with EPA in evaluating and selecting a remedy that would provide maximum habitat for trust resources and understand the use of the site be these species. The study will be conducted in phases to achieve the overall objectives of the study.





Naomi Tague                                   7/1/11-6/30/14                                              86,251


Oregon State University, S1343H-A


Ecohydrological Component of Willamette Water 2100 Project.

Watershed scale paired-catchment experiments have clearly demonstrated that the relationship between vegetation and streamflow varies strongly with geographic and climatic settings. Process-based modeling provides a non-destructive method to generalize results from site specific field studies to a broad range of scenarios characterized by climate, geomorphology, species type and disturbance regimes within a given region. This proposed work explores these interactions through a series of five questions designed such that the knowledge gained from one step informs the next. Broadly, this work focuses on how streamflow is influenced in a forested, temperate watershed with particular attention to growth/regeneration processes and climate. Specifically, the questions emphasize abiotic, biotic and disturbance themes:

1.         Abiotic: How does the timing of water inputs (snowmelt, rain v. snow partitioning) change forest AET/PET? How do soil storage and vegetation characteristics influence this relationship between timing and AET/PET?

2.         Biotic: How does a dynamic carbon allocation cycling strategy (fixed ratio, age-based, resource-based) in conifers influence the streamflow response under current climate conditions? And with warmer temperatures?

3. Disturbance: a.Spatial: How does streamflow respond to a change in forest species at variable spatial extents—i.e., entire watershed versus the riparian zone?

 b.Temporal: How does the trajectory of post-fire recovery of biomass and associated hydrologic response vary with inter-annual climate variability? Does this relationship change under a warmer climate?

4.  What climate conditions would push Doug Fir to widespread mortality in the Cascades?


 We initially approach these questions using Lookout Creek as our study site. Lookout Creek is a 64 sq-km watershed within the McKenzie River basin. Elevation ranges within the watershed frequently include the rain-snow transition zone, thus it is likely to be highly sensitive to climate warming. We address our research questions using RHESSys, a coupled ecohydrological model designed to represent feedbacks between hydrologic and vegetation carbon cycling processes ( This project builds on an            existing implementation or RHESSys for Lookout Creek.  Vegetation in the basin will be represented by a single canopy layer composed of Douglas-fir (Pseudotsuga menziesii), Western Hemlock (Tsuga heterophylla), and Red alder (Alnus rubra). Topography (and finest spatial resolution) will be represented with a 30-m digital elevation model (DEM) (available through the HJA data portal and soil depth map (developed by Vache and McDonnell). Historical climate recorded at CS2Met will be used as baseline temperature and precipitation inputs at a daily time scale with PRISM data sets used for spatial scaling of temperature and precipitation. Model performance will be evaluated using daily streamflow records and published estimates of aboveground net primary productivity1,2,3. Additionally, model estimates of canopy height will be checked against a recently completed LIDAR survey and sapflow data of stands of different age in W1 will be used to check calculated transpiration.

After we have gained a process-based understanding of key linkages between vegetation change and streamflow at the Lookout Creek scale, we will use the model to explore scenarios at a larger spatial scale, the 2409 sq-km basin of McKenzie River at Vida. The future scenarios will be developed in conjunction with other researchers in the WW2100 project and will include changes in climate (i.e., temperature and precipitation) and shifts in species types and ranges.




Naomi Tague                                   9/1/12-8/31/14                                              79,542


University of California, Merced, 20121104


The California Critical Zone Observatory.

Funding from the CZO is currently supporting Phd candidate Khongho Son. Support for an additional 1/2 year will allow him to complete his integration of CZO hydrologic data and coupled eco-hydrologic modeling of climate responses for the CZO watersheds (see papers in prep 1 through 4).  Results from previous modeling analysis demonstrate shifts between temperature and water limited responses to climate warming across a combination of micro-climate, drainage-position and soil depth gradients defined by the CZO. We would like to extend this analysis to a broader regional scale. A large spatial extent would cover a larger elevational gradient and includes shifts in dominant conifer species. Results from this work will link analysis done at the CZO to a broader Southern Sierra context and several ongoing initiatives (NEON, and a recent NSF funded study to look at climate-forest establishment in this region).


Recent studies across the Western US and elsewhere document increasing rates of background mortality and drought related forest dieback (Allen et al., 2010).  We expand our data-model integration to examine how site specific geoclimatic characteristics mediate the vulnerability of forests to these disturbances. We build on recent work demonstrating the application of RHESSys for a Ponderosa Pine forest in New Mexico where model accurate estimated spatial patterns of dieback during the early 2000s drought. We will estimate spatial patterns of drought-related mortality in the Southern Sierra CZO and examine where and under what conditions threshold responses are most likely to occur.  This work will build on prior modeling and data collection at the CZO. We seek to fund a second PhD student for 1/2 year. By providing overlap between past-CZO student, Khongho Son, in the Tague Ecohydrology Lab and a new student we facilitate technology transfer. Key tasks in this analysis will be a) improved data assimilation of existing vegetation data sets, including LIDAR data, flux tower, and allometric measurements into the model to provide a more realistic baseline of existing vegetation carbon stores and b) parameterization of RHESSys estimates of vegetation drought responses across a range of species and soil characteristics within the CZO.  We link this project with another ongoing  USGS project - the Western Mountain and incorporate tree-ring and C13 isotope measurements in the Southern Sierra region as additional data to validate and parameterize our model. To drive RHESsys we use state-of-the art downscaling of GCM scenarios from Flint et al (2010) to 800m. GCM scenarios include downscaled NCAL, GFDL and PCM models. We further downscale data to account for topographic drivers, based on our analysis of micro-climate patterns in the CZO.




Naomi Tague                                   10/1/13-9/30/15                                          101,601


University of California, Merced, 20130866 & 1331939


Southern Sierra Critical Zone Observatory

The Southern Sierra CZO is a community platform for research on critical-zone processes along a steep elevation gradients that spans the rain-snow transition and  ecosystems from the oak savannahs to subalpine forests in Southern Sierra Nevada. The characteristic spatial differences along these gradients offer the opportunity to substitute space for time, making the CZO an excellent natural laboratory for studying how critical-zone processes respond to perturbations. This project continues the previous 5 years of work at the Sierra CZO. The overarching goal is to use a combination of measurements and modeling to advance our mechanistic understanding of the bi-directional links between longtime-scale geophysical processes and ecosystem structure/function and material (water, carbon, nutrient) fluxes. This work addresses both fundamental science questions about how landscape structure and function coevolve and applied questions about how the critical zone influences ecosystems services and material fluxes and their sensitivity to intentional (land management) and unintentional (climate, disturbance land use) drivers of change.



Naomi Tague                                  


US Geological Survey, G09AC00270         7/13/09-6/30/10                                                          79,462

US Geological Survey, G10AC00309     5/15/10-6/30/15                                                   365,554


The Western Mountain Initiative: Vulnerability and Adaptation to Climate Change in Western Mountain Ecosystems.

Climate warming is affecting Western mountain ecosystems, directly through changes in water dynamics and indirectly through altered disturbance regimes. The Western Mountain Initiative (WMI; team explores the effects of climate change on ecological disturbance, responses of forest vegetation, mountain hydrology, and the coupled hydro-ecological responses that determine vulnerability of Western mountain ecosystems to change. Extensive data sets, empirical studies, surveys, and monitoring programs are linked via models to hindcast and forecast the effects of changing climate on forest dynamics, distribution, and productivity; fire occurrence and insect outbreaks; recovery of vegetation after disturbance; hydrologic changes and glacier dynamics; and the consequences of an altered water cycle for terrestrial and aquatic ecosystems and chemistry. We will address the extent to which climate drivers are mediated by regional- or watershed-scale controls on ecosystem processes, thus quantifying vulnerability to climate change in mountain ecosystems. Region-specific results and emergent West-wide patterns will be shared with resource managers through workshops and a comprehensive web-based toolkit on climate-change science and adaptation management.

WMI seeks to understand climate-ecosystem interactions, forecast ecological change, and provide adaptation information for managers. We build on the foundation of our ongoing research program, which includes hundreds of publications, long-term datasets, and a mature network of collaborators. WMI addresses Ecosystem and Climate Change goals of the USGS Global Change Science Strategy, and Goals 4 and 5 of the U.S. Climate Change Science Program Strategic Plan. Both the National Park Service and US Forest Service are developing science-based management approaches for adapting to climate change, and WMI will collaborate directly with both agencies to ensure scientific consistency in the implementation of adaptation strategies.


In the preceding phase of WMI research, we used RHESSys to model ecosystem processes and hydrology in five forested montane watersheds representing diverse conditions across the western U.S. (sites in MT, CO, NM, CA, WA) (Christensen et al. 2008). In addition, ongoing RHESSys applications as part of other projects include a range of watersheds throughout the West (Tague et al. 2008; Tague et al. in review). Analysis at the scale of these sites (<800 km2) is critical given that management of resources takes place at small watershed scales where process-based interactions are determined by gradients in snow, temperature, and radiation; spatial distribution of moisture; vegetation structure and pattern; and disturbances (fire, insects, mass movements). This abundant RHESSys model output is ready to be carried to the next level of interpretation. Tague role in the WMI project will be to continue the refinement and application of RHESSys, as a coupled eco-hydrologic model for use in hypothesis generation and scenario development.





Naomi Tague                                   4/1/11-3/31/16                                            403,484


Washington State University (Pullman, WA), 115320 G002931


Collaborative Research: Type 2: Understanding Biogeochemical Cycling in the Context of Climate Variability Using a Regional Earth System Modeling Framework.

One of the greatest science & engineering challenges of the 21st Century is managing nitrogen (N) in the environment to maximize agricultural productivity while minimizing negative environmental effects. Developing a clear understanding of climate & human-induced changes in environmental N cycling in tightly coupled atmospheric, terrestrial, & aquatic systems & understanding how these changes feed back into the climate system are critical to addressing this challenge. In the Pacific Northwest (PNW), the interactions among N, carbon (C), climate & human activities are complex. The region has extensive & diverse agricultural lands surrounded by pristine natural ecosystems, interspersed with heavily populated urban areas. The topography of the area is diverse, & the terrain is drained by extensive river systems, including the vast Columbia River Basin (CRB). Storm patterns are closely tied to the jet stream position & sensitive to long-term circulation patterns including the El Niño Southern Oscillation (ENSO) & Pacific Decadal Oscillations (PDO). Given this complexity, a challenge is to understand & quantify the interactions & feedbacks between N & C cycling in coupled atmospheric, terrestrial, & aquatic systems as they are affected by the climate system at inter-annual to decadal time-scales over the PNW region. The overarching goal of this project is to improve understanding of the interactions among C, N, & H2O at the regional scale in the context of global change to inform decision makers’ strategies regarding natural & agricultural resource management. The approach will create a regional modeling framework by integrating and/or linking a network of state-of-the-art process-based models that are currently in existence & that are undergoing continuous development & evaluation, & to do so in collaboration with stakeholders. The Bio-EASM framework includes: WRF for meteorology, CMAQ for atmospheric chemistry & transport, VIC for hydrology, CropSyst for agricultural dynamics, RHESSys for natural ecosystem dynamics, NEWS for aquatic nutrient transport & CREM for economic interactions. Subcontract PI is the principle developer of RHESSys. The subcontract allows PI expertise to integrate RHESSys within the EASM framework & contribute to application of the integrated modeling framework to improving understanding of environmental change. With this framework, UCSB will be involved in integration process: simulations in a series of steps with increasing model integration & coupling to address questions related to 1) how climate variability affects regional biogeochemical cycling with specific focus on N & C, 2) how do regional N & C cycles feed back to climate in terms of greenhouse gas fluxes in the context of landuse change & inter-annual variability, & 3) how do land use & agricultural production decisions affect the interactions of N, C & climate & how do these interactions interplay with economic drivers. PI will supervise a post-doctoral scholar who will work on the RHESSys evaluation for a series of focus study sites, & RHESSys integration into Bio-EAsSM. Evaluation of RHESSys will include set-up, calibration & sensitivity analysis of RHESSys carbon, nitrogen & hydrologic estimates at the focus study sites with particular emphasis on evaluation the nitrogen cycling component. UCSB will undertake any necessary refinements to RHESSys based on retrospective, site-specific analysis. PI will work with other PIs to decide on appropriate data sets for retrospective, & N-deposition & climate change scenarios for stand-alone RHESSys modeling, and will work with other PIs to develop papers on these off-line RHESSys model applications. PI will work with the other Bio-EaSM modelers to embed RHESSys within VIC & contribute to analysis of coupled modeled results; & will work with the Bio_EaSM team in the design & application of the fully coupled model & participate in developing papers, presentations & outreach.





Toshiro Tanimoto      Ralph Archuleta         2/1/13-1/31/16                               25,000


University of Southern California, 39073248


SCEC4 Participation, Project G: Modeling high-frequency seismic waves in Southern California

During the period 2/1/2013-1/31/2014, the PI, his student and his Japanese collaborator Dr. Taro Okamoto will perform waveform modeling of monochromatic high-frequency (1.12 Hz and 1.64 Hz) shaking data in the Los Angeles Basin. There were multiple sequences of shaking experiments that lasted 4-6 hours between 2000 and 2002 and were recorded by more than 100 stations in the regional seismic network. These data have not been modeled as the available computers were not fast enough to do modeling work until recently.


Through computer modeling, we will create a better attenuation model which will explain observed amplitudes on the average. We will also perform analyses, based on the adjointoperator approach, that will clarify the nature of seismic waves in the shaking wavefield. The wavefield is essentially a standing wavefield and should contain (equivalent) body waves and surface waves. This analysis will bring new information on the attenuation structure for highfrequency waves. We expect to learn how an attenuation model should be and how the SCEC CVM may need modifications. The two main goals of this project for the coming year will be:

1. Decipher the nature of harmonic signals and improve our understandings of high-frequency

wave propagation

2. Derive a better attenuation model that explains the shaking data.


Jennifer Thorsch                             6/10/14-9/30/15                                            25,000


California Coastal Conservancy, 13-078

Kids in Nature Explore the Coast

The Kids in Nature (KIN) program at the University of California will provide opportunities for teachers and students to explore the coast. The goals of the program include reconnecting children to nature and engaging underserved children in activities that will develop an appreciation for and stewardship of the local coastal environment. The program will include classroom studies and student/teacher field trips to local coastal areas.  In addition, coastal focused activity boxes and lesson plans will be developed, a two-day institute for local 4-6th grade teachers to highlight the local coastal regions and the resources available will be offered, and funding for bus transportation for the teachers to bring their classes to one of the coastal locations will be provided. The program will also expand opportunities for UCSB students to serve as mentors through the KIN program.




Jennifer Thorsch                             9/1/10-8/31/15                                            214,305


National Science Foundation, DBI-0956281


Collaborative Proposal: Harnessing the Power of Herbarium Specimens to Understand the Changing Flora of a Biodiversity

The Consortium of California Herbaria (CCH) proposes to database 338,600 specimens and georeference 500,000 specimens of California plants to support the national effort to predict, understand, and monitor the effects of climate change.  Taxa targeted for databasing and georeferencing are dominants in California habitats and those that are most imperiled by threats to biodiversity (including climate change). The nineteen partner institutions participating in this collaborative project will make available databased and georeferenced records providing tangible benefits to the public, students of all levels, and the research community.



Jennifer Thorsch     Samuel Sweet            8/1/11-7/31/14                                80,655


The Institute of Museum and Library Services IMLS, MA-05-11-0256-11


Vertebrate Collections Management Project.

The Cheadle Center for Biodiversity and Ecological Restoration (CCBER), will utilize IMLS funding for a two year Vertebrate Collection Management project to complete the curation, documentation, cataloging, and databasing of its 24,875 herpetological, ornithological, and mammalian specimens. With the exception of UC Berkeley’s Consortium of Natural History Museums, CCBER is unique in its multiple roles of 1) curating, under one administrative structure, diverse biological research collections that are integrated into the teaching and research missions of the University of California; 2) directing ecological restoration projects that rely on the collections for biodiversity data; and 3) offering specimen-based K-12 education, scientific workshops, and evening seminars open to the public. Although our vertebrate collections are modest in size, they represent both a thorough synoptic collection for specimen based teaching and strong regional collections for research in evolution, ecology and biogeography. The vertebrate collections have been used for research purposes mostly by students associated with the curators. They are used by academic personnel in several departments both at UCSB and elsewhere for teaching, by the general public for conservation-based education, and for our K-12 environmental education program, Kids in Nature. The herpetology collection (over 13,000 catalogued specimens of amphibians and reptiles) was started in 1977 to serve both research and teaching needs. The UCSB herpetological collections are focused on southwestern California, a region that is significantly underrepresented elsewhere, yet contains the contact areas for most of the state's main zoogeographic regions (i.e., the Coast Ranges, San Joaquin Valley, Sierra Nevada, Mojave Desert, Transverse Ranges, and southern coastal plain). Southwestern California is at the hub of rapid tectonic and regional climate changes that are driving phylogeographic patterning in a majority of the resident species. The collection has had two primary foci. From 1977-1990 the primary emphasis was on collection-building, targeting remote areas, ecotones, relict populations, and areas soon to be alienated as natural habitat. Targeted work was directed at intergrade zones in a number of reptile taxa and isolated habitat areas with unusual species compositions, as well as towards building useful series of hard-to-collect species. Since about 1990 the emphasis has shifted to documentation of the distributions and life histories of regionally declining, threatened, and endangered species. Life history materials, particularly for amphibians, are seldom well represented in western North American collections, and the CCBER collection has strength in this area. Some of the most compelling arguments for federal listing of amphibian and reptile species in southern California have depended on the vouchers and data housed in CCBER, and in the current regulatory environment, these vouchers have been invaluable to state and federal agencies. Herpetological specimens were used in providing some of the biological and distributional data that resulted in the official listing of the California Tiger Salamander (Ambystoma californiense) and the Arroyo Toad (Bufo microscaphus californicus) as endangered species by the US Fish and Wildlife Service (see Sweet, 1991 1993, and Jennings 1994). Dr. Sam Sweet regularly uses the collection in his upper division courses at UCSB and to educate agency biologists regarding species of critical concern for this region and for general identification workshops. Most of the specimens are preserved in 70% denatured ethanol, and some in 10% in formaldehyde.


The CCBER ornithology collection (6245 catalogued specimens) and mammal collection (1,745 specimens) are important regional collections that will exhibit modest, targeted growth in the future. The collections were started by Drs. Mary Erickson and Barbara DeWolfe, former faculty members in the department of Ecology, Evolution, and Marine Biology (EEMB). The mammal collection includes 172 addition, our website contains images and information on the collections, and the library and archives are used by campus and community members. Our award winning “Kids in Nature” program (received 2007 Governor’s award in Environmental Education) with over 100 5th graders enrolled as well as other K-12 classes visit our museum several times each year and participate in hands-on activities with various collections. The Vertebrate Collection Management Project fulfills several goals in our five-year strategic plan. For the past two years, we have focused on improving collection usage and collection management procedures such as documentation, data accessibility, and preservation of our collections through museum best practices. As part of our strategic plan, in 2008 we asked an external review panel of university faculty from across the country to meet with our faculty curators, our directors and key staff (Goal 8). Their invaluable experience with university natural history collections similar to ours provided us with recommendations in several key areas: improving staffing and storage space for all collections, databasing of all biological specimens and uploading them to appropriate federated databases, and increasing faculty use of the collections campus-wide. We also successfully established a formal curator title on the UCSB campus (a two-year process) that will acknowledge the contributions of the faculty curators during their merit review process and appointed three new adjunct curators and three affiliates to CCBER.



Jennifer Thorsch                             10/1/13-9/30/14                                            99,374


The Institute of Museum and Library Services IMLS, MA-30-13-0466-13


Digitization of the UCSB Vascular Plant Collection

The Cheadle Center for Biodiversity and Ecological Restoration (CCBER), a center under the Office of Research at UCSB, is requesting $99,374 for a one-year collections stewardship grant to image 71,600 specimens in our vascular plant collection, in order to improve databasing workflows, increase efficiency and speed, and to complete data entry of 57,295 of those specimens.

            Natural history collections represent the irreplaceable documentation of life on Earth. The Digitization of the UCSB Vascular Plant Collection project will provide UCSB faculty, students, CCBER staff, environmental consultants and the general public with access to these valuable and historically significant collections but also contribute to a larger effort worldwide to digitize millions of biological specimens as quickly and efficiently as possible. The project will also provide the opportunity for student interns to learn new skills and increase their interest in the work to pursue employment or advanced degrees in museum studies or collection management.

            The Cheadle Center's lack of funding for steady employment of a data entry technician coupled with current data entry protocols indicate a best case scenario of over seven years to complete the databasing of the remaining mounted 57,295 specimens. Our challenge is to make the data available in the most timely way. This will be done by adopting new workflows to capture label data from digital images and using optical character recognition software that can be entered directly into our database, thus reducing keystrokes and improving our hourly rates of data entry. The project goals and activities will be accomplished in one year by hiring an imaging technician who will take digital images of all catalogued sheets and enter specimen data, a project manager who will process images, enter data, and manage image and data uploads into a Specify database, and student interns who will do data entry. In addition, a taxonomist will oversee the curation, mounting, and cataloging of an additional 6200 backlogged specimens and will begin georeferencing completed records. At the end of the project, images and specimen data will be available through a Specify web portal on our web site.  Completed California specimen records will also be uploaded to the Consortium of California Herbaria database, while additional specimens that are subsequently georeferenced will also be available to export to additional federated databases, such as the Global Biodiversity Information Facility (GBIF) to be repurposed for use in floras, species lists, and historical distribution studies.

            The intended results of this project are: 1) improved databasing protocols and increased output leading to completion of the vascular plant collection 2) 71,600 herbarium sheet images available for online identification and assistance in refining loans to relevant specimens 3) increased preservation of specimens by reduced handling over time 4) availability of new data sets for regional and statewide biodiversity studies and 5) increased potential workforce by retaining and educating interns.  Additional benefits include improved loan management and tracking and safer long-term backup for images and data. We will evaluate and measure the success of our project through daily statistics, quality checking and modification of protocols as needed to accomplish our goals, monthly review of project activities and progress, and yearly performance evaluations.

            The Cheadle Center's primary collection management goals are to prepare, organize, and catalog collections for greater accessibility and to make specimen data available online for all of our audiences.  This project strengthens our ability to serve our audiences more effectively by supporting these goals and advancing the university's mission of Education, Research, and Outreach.

              Natural history collections represent the irreplaceable documentation of life on Earth. CCBER’s botanical collections contribute to discovering, understanding, and documenting biodiversity and to informing public policy on such issues as invasive species, species extinction, and climate change.